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FOREWORD

Professor Chung-hua Wu pioneered the three-dimensional flow theory for turbomachines at Lewis
Flight Propulsion Laboratory, NACA in 1950. He introduced the S, and S, families of relative stream
surfaces and thus reduced three-dimensional flow problems to problems of iterating two soiutions of two
independept variables. The relaxation or direct matrix method was used for subsonic flows and the
method of characteristics for supersonic flows. Laborious but accurate results were obtained without the
benefit of modern digital computers. In the sixties Professor Wu developed a body-fitted, nonorthogonal
curvilinear coordinate system to improve computational accuracy. In subsequent years Professor Wu and
his colleagues at the Institute of Engineering Thermal Physics, the People’s Republic of China, developed
shock-fitting and artificial compressibility methods for solutions in two- and three-dimensional transonic
flows. Professor Wu'’s theori-es were design tools used in aircraft engines such as the J69, JT-3D, Spey,

RB211, JT9D, F404, etc.

Since the early sixties Clemson University has been active in internal flow analysis. Through the
support of the NASA Lewis Research Center in the early seventies, an inverse design method of the
Griffith diffuser was developed. Initially the method was limited to potential flow. In subsequent years,
the inyerse method development at Clemson for internal flow has improved to include viscosity,
compressibility and turbulence. Presently Clemson’s inverse solution method is used in design

modification of the GE MS-7001F gas turbine using coal gas as a fuel.

Because of mutual interests in internal flows and ties to the NASA Lewis Research Center, I became
familiar with Professor Wu’s work. In 1979, the year after U.S.A. and China resumed a normal
relationship, I met Professor Wu in Beijing. He was the director at the Institute of Engineering Thermal
Physics, The A;:ademy of Sciences, People’s Republic of China, at that time. We discussed the

possibilities of exchange visits and collaborations.



A project emerged with the following specific objectives:

(1) To prepare a manuscript that summarizes the work of more than 100 journal articles on
S, and S, methods and three-dimensional flow solutions in turbomachinery that Wu and his

colleagues developed in the last 40 years

(2) To give two lecture series on the above subjects, one at NASA Lewis Research Center and the

other at the University of Cincinnati

(3) To discuss, on a regular basis, research problems in internal flows with graduate students and

faculty of the Department of Mechanical Engineering of Clemson University

Thanks to the assistance of Dr. Melvin J. Hartmann, Director of University Programs at NASA
Lewis, the aBove objectives materialized in 1990 with the support of a grant for NASA Lewis. Clemson
University was privileged to have had Professor Wu and his wife, Professor Min-Hua Li, reside on
Clemson’s campus from January 1990 until May 1990. The lecture series at NASA Lewis was held
March 19-21, 1990, and April 16-17, 1990, in Cincinnati. The manuscript draft was completed prior to

Professor Wu’s return to China.

On the eve of publishing this report, I would like to recognize the efforts of Dr. Lonnie Reid, Chief
of Internal Fluid Mechanics Division, and his colleagues who reviewed the manuscripts, and to express my

appreciation to many others at NASA Lewis who made this report possible.
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It was a fulfilling experience and an inspiration for me to work with Professor Wu on this project.
Persons who were involved with this project hope that this report will serve a useful purpose not only to
document the work of computational fluid mechanics in turbomachinefy, but also to encourage those of
us who continue to toil in turbomachinery research.

On September 19, 1992, Professor Chung Hua Wu died in Beijing after a prolonged illness. While in
the hospital, he read the final typing of the manuscript. We are sorry that he did not see his report
released. The subject of this report is Professor Wu's lifetime effort. We hope this report will inspire

those of us who toil in the field of turbomachinery.

March 1991

Project Coordinator
Tah-teh Yang
Professor of Mechanical Engineering

Clemson University
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SYMBOLS

a Jacobian of matrix a, g velocity of sound

348 ~ basic metric tensor of two-dimensional x® coordinate system

b,B integrating factor in the continuity equation for S, and S, stream surfaces
C blade chord in z-direction; artificial compressibility coefficient

< spéciﬁc heat at constant pressure

<, specific heat at constant volume

D/Dt differentiation with respect to time following relative motion of fluid particle '

e internal energy of fluid per unit mass
ei,e' base vector and recii)rocal vector of x! coordinate system
F force actiné 6n S, surface per unitr mass of fluid, —-[ 1 .?P.]n
. n,pr dp
g Jacobian of matrix 8ij
&jj ~ covariant metric tensor of x! coordinate system
gij contravariant metric tensor of rxl coordinate system
H - absolute stagnation enthalpy, h + V2/2
h enthalpy per unit mass of fluid, u + p/p
I relative stagnation rothalpy per unit mass, I =i + Wz/ 2=H-wVyr
i rothalpy per unit mass, h — U?/2
J station along x! coordinate lines
K station along x? coordinate lines
Y- orthogonal coordinates on surface of revolution
M Mach number
N number of blades
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r,0,z

I,p,2

unit vector normal to stream surface

cascade spacing (pitch)

pressure

any fluid quantity

heat transfer to fluid per unit mass per unit time
gas constant

radius vector

absolute cylindrical coordinates

relative cylindrical coordinates

relative stream surface passing through fluid particles lying on a circular arc upstream

of or midway in blade row

relative stream surface passing through fluid particles lying on a radial or curved line

upstream of or midway in blade row

entropy per unit mass of fluid

absolute temperature

time or circumferential thickness of blade

blade velocity at radius r

du =¢,dT

unit base vector and reciprocal vector

absolute velocity of fluid

@gu]u momentum of fluid about axis of rotation
relative velocity of fluid

physical component of relative velocity tangent to xi
work done by.fluid element per unit mass per unit time

contravariant component of W

S TE



w; covariant component of W

be general curvilinear coordinates (i = 1,2,3)

z distance along turbomachine axis

B angle between W and its meridional component
o ratio of specific heats

0ij angle included by the coordinate lines x' and x

B coefficient of viscosity, coefficient of artificial viscosity, or Mach angle

9]

absolute vorticity, V x V

x viscous stress tensor

P fluid density

P artificial density

7 angle between z and = tan™!(dr/dz)

T normal, circumferential, or radial thickness of stream filament

¢ dissipation function

v stream function

w angular speed of blade

9/ ! partial differentiation of a flow variable on stream surface with respect to
coordinate x!

Subscripts:

c casing

e exit station

h hub

i inlet

¢ meridional component

L.E. leading edge

xi



Pl |

m mean (midchannel)

n component in the direction normal to hub or casing
P pressure surface of blade

| 7 ] radial, circumferential, and axial component

8 suction surface of blade

T.E. trailing edge
Superscripts:
° stagnation state

‘ . . L3
dimensionless quantity

xii



CHAPTER 1
INTRODUCTION

As a result of studying the effect of the radial equilibrium condition on the radial flow field in
the axial-flow turbomachine (refs. 1 and 2), a general theory of three-dimensional flow in turbomachines
(ref. 3) was proposed in 1950. It was intended for solving the three-dimensional flow in a turbomachine

(1) Having arbitrary hub and casing shapes—the theory applicable to axial-flow, radial-flow,

and mixed-flow turbomachines
(2) With a finite number of blades which have finite thickness and arbitrary shape

(3) With fluid moving through it at a high speed—the speed of flow being purely subsonic or

supersonic

The fluid flow through the stator and rotor blade row was assumed to be steady with respect to the
st.ationar); blades and rotating blades, respectively. It was proposed to obtain steady flow relative to the
blades by an iterative solution between two families of relative stream surfaces. The families were the S,
family and the S, family. The problem of determining the flow field with three independent variables
was reduced to a number of flow fields having only two independent variables. Thus, the purely subsonic
or purely supersonic flow along an S, or S, relative stream surface could be accurately solved by the
mathematical techniques available at that time. The relaxation or direct matrix method was used for the
_ subsonic flow, and the method of characteristics was used for supersonic flows. References 4 to 10
contgin the solutions obtained by these methods and the approximate solutions obtained by series

expansion in the circumferential direction from a mean streamline on the S, stream surface in axial flow
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turbomachines and centrifugal compressors. Almost all of these calculations were obtained by

mechanical, digital computers. This was a laborious endeavor and consumed a great deal of time, but
provided insight into the characteristics of three-dimensional compressible flow in turbomachines. Those

insights were useful to the development of the three-dimensional flow in turbomachine theory.

The flow computations reported in references 10 and 11 are probably the first two turbomachine
calculations ever performed on large-scale, high-speed, electronic digital computers. Reference 10 includes
calculations along the mid-channel S, relative stream surface for high subsonic flow. Reference 8
contains computations along the mid-span S, relative stream surface for incompressible flow at design
and off-design inlet angles. The number of interior grid points for the two problems was 400 and 200,
respectively. The fourth degree diffel;ential formula was used. It took approximately 60 hr on an IBM
CPEC computer to factorize the coefficient matrix into lower and uppér triangular matrices for the
turbiﬂe problem. The compressor problem was also factorized in 60 hr on an IBM 604 computer. The
gas turbine problem was also solved on an UNIVAC computer later and took a relatively shorter perii)d

of time—11 min for factorization and 2.5 min for each cycle of stream function calculation.

With the advent of the faster, modern digital computers, solutions for the subsonic flow along the
S, and 8, stream surfaces were obtained by many turbomachine investigators (refs. 12 to 26).
Solutions obtained on IBM 360, 370, KDF9, and Facom 230-26 took about 0.5 to 35 min. In addition to
the S, and S, stream surface flow solutions, quasi- (refs. 22 to 25) and full-three-dimensional flows
(ref. 25) were obtained on IBM, Facon, and CDC 7600 in about 2 to 16 min (refs. 22 to 25). The §,

surfaces were assumed to be surfaces of revolution in calculating the quasi-three-dimensional flow.

Along with the de\}elopment of high speed digital computers, the development of mathematical

calculation techniques continued. One major development of the latter was avoiding the inconvenience



and inaccuracy caused by unequal grid spacing near an arbitrarily shaped boundary surface, which exists
in all practical applications. One approach used more accurate, high-order differentiation at such points
(ref. 27). A second approach used body-fitted finite elements to discretize the differential equations (refs.
19, 20 and 25). A third approach used the body-fitted, nonorthogonal, curvilinear coordinate system
(refs. 28 to 33). A second major development in mathematical techniques was the solution of transonic
turbomachine flow using the time-marching method (refs. 34 to 36), separate-region calculation and shock

fitting (refs. 37 to 39), and artificial compressibility (refs. 40 to 42).

This report is a slightly expanded version of a series of lectures given at NASA Lewis and at

Cincinnati University during the spring of 1990.

Chapter 2 briefly reviews the fundamental aerothermodynamic equations governing three-
dimensional flow in turbomachines. The equations, in the beginning, are for the most general case of
unsteady flow of a viscous fluid relative to a rotating blade. The two independent thermodynamic
properties selected were entropy and relative stagnation rothalpy of the fluid. The latter is a
thermodynamic property introduced especially for calculating three-dimensional flow in the rotating blade
row. The implication of assuming steady absolute flow in the stator and the steady relative flow in the
rotor at the same time is also discussed. After a discussion on the effect of viscosity in the governing

equations, a practical method for considering the viscous effect on the flow field is given.

Chapter 3 presents the basic idea of expressing flow variables on a general stream surface in terms of
two independent variables, i.e., the two coordinates. This chapter continues conservation of mass in a
fluid element. In such a case, the governing equations naturally contain a stream filament thickness

term, a general function of the two coordinates. The flow along the stream filament is obtained by
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solving the principal equation with the stream function as the single dependent variable. Procedures for

solving direct (analysis) and inverse (design) problems are described.

To have high accuracy in the finite-difference approximation at grid points near a curved boundary
wall and to satisfy the boundary condition at the curved wall accurately, the body fitted, general,
nonorthogonal, curvilinear coordinate system is used for both S, and S, stream filaments. By using
tensor calculus——the continuity equation, the vorticity equation, the dynamic equation, the energy
equation, and the principal equation are easily expressed in terms of the general, nonorthogonal,
curvilinear coordinates and corresponding nonorthogonal velocity components. These equations and '

methods of solution for flow along S, and S, stream filaments are given in Chapter 4.

The first part of Chapter 5 presents a simple, approximate solution for subsonic flow along the S,
stream filament of revolution by circumferentially extending the known solution on the mid-channel
streamline. Also in this chapter a simi)le, approximate three-dimensional solution is obtained by
circumferentially extending the known values on the mid-channel stream surface. The second part of this
chapter presents results obtained in subsonic S; solutions employing H typeand C type
nonorthogonal, curvilinear coordinates. The third part describes procedures for quasi-three-dimensional
blade design and full-three-dimensional analysis of given blades. A comparison of the calculated three-

dimensional flow field and measured data is also included.

Chapter 6 describes several relatively quick methods for calculating the transonic flow along S, and
S, relative stream filaments. The method of separate-region calculation with shock-fitting, elliptic
solution of the stream-function principal equation, to which artificial viscosity is introduced in the density

term to stabilize the transonic calculation for both the S; and S, stream filament, and the elliptic

TR



algorithm for the inverse solution of S, flow (Vgr prescribed), which is modified for obtaining a sharp

shock discontinuity, are presented. The calculated results are compared with experimental data.

Applying the quick solution methods described in Chapter 6, the quasi-three- and full-three-
dimensional transonic flow solutions in two compressor rotors were obtained and are presented in
Chapter 7. The solutions are presented with emphasis on the convergence process and the geometry of
individual S, and S, stream filaments obtained in the three-dimensional solution. These solutions are

also compared to experimental data and afe included in Chapter 7.

Based on the analytical solutions of three-dimensional subsonic and transonic flows and their
- respective experimental data, practical methods for three-dimensional turbomachine blade design and

blade element test data correction emerged and are proposed in Chapters 6 and 7.
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CHAPTER 2
FUNDAMENTAL AEROTHERMODYNAMIC EQUATIONS GOVERNING THE

THREE-DIMENSIONAL FLOW IN TURBOMACHINES

2.1 Basic Aerothermodynamic Equations Governing the Three-Dimensional

Flow of a Viscous Fluid Through a Stationary Blade Row

The general basic aerothermodynamic equations governing the flow of a viscous fluid through a
stationary blade row which were formulated in reference 1 in connection with the calculation of a radial-
equilibrium condition for the design of turbomachine blades are as follows:

Continuity Equation: From the principle of conservation of matter, the equation of continuity is

% L v.(pV)=0 (2.1)
x
or
v.v 4+ Dlre _ (2.1a)
Dt

Dyna.mic Equation: Newton’s second law of motion is expressed for viscous fluid by the Navier-Stoke’s

equation.
pPX=_vp+,,v’v+§V(v-V)+... - (2:2)
where ... represents high order terms due to viscosity change with temperature.
6
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Energy Equation: From the first law of thermodynamics, one form of the energy equation is

=4+ - 'mm—

Du , , D(1/p) ¢
Dt Dt p
in which
du = ¢, dT (2.4)
i=1v.xvr (2.5)
p
and

®=p2V.(V-V)V 4+ (Ux V)2 _2(V.V)(V.V) - _g(v . V)? (26)

For turbomachine calculations it is convenient to take specific stagnation enthalpy H and specific

entropy s as the two independent thermodynamic properties defining the thermodynamic state of the

gas. They are related to other thermodynamic properties and velocity by

HEh+;V2=(u+P/P)+%V2 (2.7)

and

Tds=4du+p &('1/,;) o : (2-8)

By the use of equations (2.2), (2.7), and (2.8) the following forms of dynamic equation and energy

equation were obtained (ref. 1):



e

%—Vx(VxV):—VH+TVs+ﬁ
p

and

+V.

_=q

1dp
Dt pat

\ltet

ﬁ[v’v + %V(V : V)]+ e
P

In the case of steady invicid flow, equation (2.2a) becomes

Vx(VxV)=VH-TVs

V2V+%V(V-V)+...

| (2.23)

(2.3a)

(2.2b)

which is the Coroco equation originally deduced for the investigation of flow with shock and vorticity.

The second law of thermodynamics states

which conforms with the second law of thermodynamics, equation (2.9).

(2.9)

(2.10)



From the preceding general, basic equations the following can be noticed:
(1) In the stationary frame of reference the flow unsteadiness is represented by the partial derivative,
with respect to time, of density in the continuity equation, of velocity in the dynamic equation, and of

pressure in the energy equation.

(2) Stagnation enthalpy is, in general, affected by the viscosity of the fluid through the last two
terms on the right side of equation (2.3a). If the last term on the right side of equation (2.1a), the
viscous force per unit mass of fluid, is denoted by Fy, then the two viscous terms in equation (2.3a) are
®/p and V-F. Thus the effect of viscosity on the stagnation enthalpy is not represented by V-F;

alone.
2.2 Effect of Viscosity on Basic Equations
In order to more clearly see the effects of viscosity on the changes in stagnation enthalpy and
entropy, the dynamic equation (2.2a), the energy equation (2.3a), and the entropy equation (2.10) are

further examined using the stress tensor = (ref. 43).

Newton’s Second Law_of Motion

Let the resultant stress (force per unit area) acting on the surfaces of an infinitesimally small fluid
element be denoted by r (fig. 2.1) where r is related to the hydraulic pressure p, uniform in all

directions, and a viscous stress x’ by the following equation:



% Txy Txs %% Txy Txs -p 0 O
r=|ry 9y Tyul=|x 05 |+ 0 -p O (2.11)
Tsx Txy s ix Ty % 0 0 -p
or
75 = —péy + ’ri'j ' - (2.12)
where
P 1, i=]
70 e
y 1 #]
The vector and tensor form of Newton’s second law of motion are, respectively
DV_ lyp4lvy ' (2.13a)
Dt P P '
and
DV, 4V, Ix
RACTE AL IR AAL IR Y. il (2.13b)

where Einstein’s summation convention is used.

. By using equations (2.1), (2.2), and (2.3), Newton’s second law of motion can also be put into the

following form:

10
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g—vX(V'x V)= -VH+TxVs+ 1v.r' (2.14)

P

First Law of Thermodynamics

The first law of thermodynamics is, in general, expressed by

Xog-w (2.15)

The time rate of work done by the force acting on the fluid element surface, per unit mass of fluid,

as seen by a stationary observer is

W = lf_(ﬂi_) =_1 dad) + 15(‘§jvi) (2.16a)
4 axi P axi P axi
or
. 1 1 1 ,
W= _V (V)= -ZV.(pV) + V- (zV) (2.16b)
P P P
where
'V =x; 2.17)
x V = "’ijvj (2.17)

The first term on the right side of equation (2.16b) can be written as

lowy=wvp+pvy=1 [E - 9_‘3] +Pwv.y

11



Substituting the continuity equation (2.1a) into the preceding equation results in

1 1{D 1D D 1
1v.v) = _[_P - @] _p1lDs_Dlp/e) 1%
p p\ Dt & pp Dt Dt p &
Substituting the preceding equation into equation (2.16b) results in
Dip/p) _ 1% | 1g.(s.V) (2.18)
Dt p ot p
To this observer the time rate of increase of internal energy is
2
De_Df, ¥ 219)
Dt Dt 2
Substituting equations (2.18) and (2.19) into equation (2.15) yields
DH_1® L 441lv. (V) ‘ (2.20)
Dt p ot P

The energy equation (2.20) can be put into a slightly different form by expanding the last term on

the right side of the equation as follows:

T Y a"'iﬁ} (221)

12
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But

xl. — = Q 2.22a
15 (2220)
and
1 9%’
- g F; : (2.22b)
P X

Therefore, the energy equation (2.20) can be written as

25:1@+Q+E+Ff-v (2.23)

Dt p ot P

which is the same as equation (2.39).

The energy equation (2.20) can also be transformed to the form of equation (2.3) as follows by

multiplying terms on the left side of equation (2.13b) by \/E

p D2V _v® v T (2.24)

Using equations (2.21), (2.22a), and the continuity equation (2.1a), equation (2.14) is transformed into

the following equation:

w=|pD0/) _8|_DV (2.25)
Dt P Dt 2

13
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Substituting equations (2.25) and (2.19) into the first law of thermodynamics, equation (2.14) results in

Du_ ,D(1/s) _

Du i+ 2
Dt Dt p

which is identical to equation (2.3).

The physical meaning of this form of the energy equation can best be seen by deriving the equation from

the point of view of an observer moving with the fluid element. To this observer the time rate of the

‘increase of its internal energy is

De= Du

_— 2.26
Dt Dt ( )

and the rate of doing work against the surroundings by unit mass of the fluid element per unit time is

w£=—lxijﬁ=l ﬁ—r'iji‘ﬁ —pD/p) 2 (2.27)
p % el % 9; Dt =

In equation (27) w ¢ is the rate of work done by unit mass of fluid element as seen by an observer

moving with the fluid element and £; are the coordinates moving with the fluid element.

14



Substituting equations (2.26) and (2.27) into equation (2.15) yields

Du -
Dt

D(1/p) _ @
Dt p

~ | (2.28)

Equation (2.28) is exactly the same as equation (2.21) which is obtained by modifying the energy
equation (2.26) obtained from the point of view of a stationary observer with the use of Newton’s second

law of motion (eq. (2.13)).

It is important to notice the following:

(1) To a stationary observer, the rate of work done by unit mass of fluid against viscous forces and

the rate of increase of internal energy are, respectively,

—EV'(I'- V) and w (2.29)
p Dt

These two terms appear in the corresponding energy equation (2.20).

(2) To an observer moving with the fluid, the rate of work done by the unit mass of fluid against

viscous forces and the rate of increase of internal energy are, respectively,

These two terms appear in the corresponding energy equation (2.28).

15



In the derivation of the energy equation from the first law of thermodynamics, the expression for
work done by the fluid element against its surroundings and the increase in the internal energy of the
fluid element must be written for the same observer, either stationary or moving with the fluid. If one is
written for the stationary observer and the other is written for the observer moving with the fluid, the

resulting equation is erroneous. Unfortunately this kind of mixup has appeared in some publications.

Two-Dimensional Laminar Boundary Layer Flow In order to clearly see the effects of fluid
viscosity and heat transfer on the energy equation and entropy equation, the following general analysis of
steady laminar boundary layer flow is made. The velocity and temperature distributions in the boundary
layer and an infinitesimally small element whose width and height are éx and &y are shown in
figure 2.2. The x and y coordinates are chosen, respectively, to lie along and perpendicular to the
tanggjutro_fr tbe b]ade surface. The approximate relation commonly used to treat boundary layer problems
is employed in the analysis. Fluid pressure may have a gradient in the x direction.

(1) To a stationary observer, the time rate of work done by the fluid, per unit mass, is

— ;1, _éa;(p Vx- - rVy) + %(—rvx + pVy) 50

1y .

= v.pv) - v(x-V)
p

and after employing the continuity equation

w=D{/ _lg. (y.v) (2.30a)
Dt P
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The time rate of heat transfer to the fluid element, per unit mass, is

q=ivﬁ[§] 231)
p Oy\ oy

Substituting equations (2.30a) and (2.31) into the first law of thermodynamics equation (2.15), the

following is_obta.in_ed:

3(rv,) . arv,)
0x %

13@2}.NW»-1
poy\ -oy Dt /]

_D [u N y_z] (2.32)
Dt 2

Rearranging terms gives

(2.33)

a(rv,)

In equation (2.33),

. 9(rVy) .
is much smaller than % and can be neglected. Equation (2.33)

then becomes

(2.34) .
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If p = constant, Pr = 1, and the difference between V and V_ is neglected, then equation (2.34)

becomes

di _ pldh & vy u PH (2.35)

H = constant everywhere in the boundary layer is a particularly useful solution to the above equation. In
this case, the wall temperature T, equals the fluid stagnation temperature T. When < of the gas is

a constant,

v2
T, =T + — = constant (2.36)
2c
P
Differentiating equation (2.36) results in
Vv
a__Y& (2.37)
dy cp %

It can be seen from equations (2.37) and (2.31) that

(a) at the lower boundary of the boundary layer, V =0 and aV/dy > 0, therefore, 7 > 0 and
T /oy = q = 0;

~ (b) at the upper boundary of the boundary layer, V.=V, and 9V /dy = 0, therefore, 7=0 and

/ey = § =05

(c) between these two boundaries, W /dy > 0, r > 0, dT/dy < 0, and therefore, heat transfer is in

the y direction.
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Since H = constant, equation (2.34) indicates that, under the present approximation, the amount of
heat transferred into (or out of) the fluid element is equal to the work done by the fluid element on the

surrounding (or by the external viscous shear stress on the fluid element), i.e.,

sbg)--apa- (50

Of the two terms on the right side of equation (2.38) the first one is always negative and the second one

is alwa.yé positive.

2. To an observer moving with the fluid the time rate of work done by the fluid element, per unit

mass, on its surrounding is

w=pP/p) _ :[E’XV_f + ﬂ'] ~ pD(/p) _ r Vx (2.39)
Dt s\ on % Dt p %

where ¢ and g are coordinates moving with the fluid, with the velocity W. Since

oW, /3E<<OW ;/an |

$ - T[awe + aW,,] ~ ravx ~ ”[EY:_(]. >0 (2.40)
9y 9 oy oy

Substituting equations (2.39) and (2.32) into the first law of thermodynamics, the following is obtained:
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Du 1 a[ arr] _ [p b(l/p) T an] (2.41)
Dt p Oy

Substituting equation (2.41) into the entropy equation (2.61) results in

rDs _ 1[3[ fz]+ Ve (242)
Dt ployl oy dy

The preceding two equations give, respectively, rate of increase of internal energy and entropy in the fluid
element due to the work done on the fluid element by viscous force acting on the fluid element.
In the particular solution above, substituting equation (2.38) into equations (2.41) and (2.42) results

in the following equations, respectively:

. |
Du_ 1y o D(A/p) _ gi& _ pDU/p) (2.43)
Dt p oy Dt P gy? 2 Dt
and

VZ
Do 1y r__pd (2.44)
Dt ] oy pay2 2

The first term on the right side of these two equations is always positive because or/dy is always

negative.

In this example it is quite clear that
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(&) the rate of work done by the viscous forces on the fluid element, per unit mass, seen by a
stationary observer at rest is 1/p &(rV,)/dy = 1/p (rdV /Oy + V, 0r/dy), where the first term is
always positive and the second term is always negative.

In the particular solution above, because the work done by the fluid element and heat transfer to the
fluid element just cancel each other, the stagnation enthalpy remains constant along the relative
streamline.

(b) The rate of work done on unit mass of fluid by the viscous force seen by an observer moving
with the gas is 7{1/p) 9V, /dy, which is always greater than zero.

In the particular solution above, (@ — W) = — l Vv, _a_r — p_D(l/_p_)’ in which the first term is

p Oy Dt
always greater than zero, thereby causing Du/Dt and Ds/Dt always to be greater than zero.

It is quite obvious that the work done by the fluid element seen by a stationary observer and by an
observer moving with the fluid element are not the same. In writing out the energy equation, they should

be used with the increase in internal energy of the fluid element seen by the same observer.

2.3 Basic Aerothermodynamic Equations Governing the Three-Dimensional Flow of a

Viscous Fluid Through a Rotating Blade Rowh

General basic aerothermodynamic equations governing the fluid flow through a blade row rotating at
a constant angular velocity were formulated in reference 3 for a nonviscous fluid, in which the entropy s
and a new thermodynamic property I, first called “modified total enthalpy” and later named “relative
stagnation rothalpy” (ref. 44), were taken as the two independent thermodynamic properties defining the

thermodynamic state of the gas. Later this formulation was extended to viscous gases in reference 43.

Contihuity Equation: From the principle of conservation of matter, the equation of continuity is
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SE I taie i i saoam a3

b b

el ab il

% L v.(pW) =0 (2.45)
&
or

Dlnp _

V.-W+ 0 (2.45a)
Dynamic Equation: For a blade rotating at a constant angular velocity w about the z axis, Newton’s

second law of motion is

]3_w=w2r+2wxW=—1Vp+1V-x' (2.46)

Dt p [

Where x’ is the viscous stress tensor acting on a fluid element.

The relative acceleration in equation (2.46) can be written as

DW _W , woyw=Y,low! —wx (vxW) (2.47)
Dt & x 2

Rothalpy and relative stagnation rothalpy are defined, respectively, by (ref. 44)

izh- 1)’ (2.48)
2
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2 2 2
=i+ Vg w0 W (2.49)
2 2 2

By using equations (2.4), (2.8), and (2.49) the following form of Newton’s second law of motion is

obtained:

95?_ S WX (VxV)=—VI+TVs - 1vs (2.50)

p

Energy Equation: The energy equation for fluid flow passing through a rotating blade can be obtained
from the first law of thermodynamics in the same manner as in the case of fluid flow passing through a
stationary blade row. First, from a stationary observer’s point of view, the rate of work done by the fluid

element, per unit mass, against its surrounding is

w=-XF.V=-XF-(W4+U)

1
== _V.:-(x-W) - XLF
» (x-W) = ZFgur (2.51)

lg.oW) - 1v. (x.w) - o Do)
P P Dt

where U is the blade speed wr. To the same observer the rate of increase of the fluid element’s internal

energy per unit mass is

2 2 22
E—_D..[u+l]=l)_u+w +2W¢wr+wr (2.52)
2 t 2
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Substituting equations (2.51) and (2.52) into equation (2.15) yields

DI _1adp , . , 1
—_—=e_—+q+ V(=W . : (2.53)
Dt pot p ( )

Just as in the case of fluid flow passing through a stationary blade row, the energy equation in the
form of the preceding equation can be transformed into the form similar to equation (2.28). For instance

the dot product of W and equation (2.46) is

2 on'. .
va_V_=W-(w2r—2wxW)=Wi$—Wi__il (2.54)
Dt 2 . ; axj
The last term in the preceding equation can be written as S
wi i’j = a(t ijwi) _ "'ij awl (2_55)
axj axj axj

and the dissipation function for the fluid element moving with respect to the rotating blade is

¢ =y (2.56)
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By using equations (2.55), (2.56), and the continuity equation (2.45); equation (2.51) can be transformed

into the following equation:

_bwu? D(Var) (2.57)
Dt 2 Dt

D(1/p) _ ¢’

Dt P

w =

p

Substituting equation (2.57) and (2.52) into equation (2.14) yields the following form of the energy

equation:

Du _ . | D(1/p) _(I>_’ (2.58)
D [p Dt p]

Again the physical meaning of this form of energy equation can be seen more clearly by deriving the
equation from the point of view of an observer moving with the fluid element. To this observer the time
rate of the increase in the internal energy is given by equation (2.26) and the time rate of work done by

the fluid element against its surroundings is -

we=-1g 0, DU/p) (2.59)

where ¢ is the coordinate moving with the fluid.

Substituting equations (2.59) and (2.26) into equation (2.14) yields equation (2.58).
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Entropy Equation: From the second law of thermodynamics,

T2 >4 (2.60)

T 2=4q+ — (2.61)
D

Equations (2.53) and (2.61) are two important equations. They appear quite similar to equation
(2:20) and (2.10), respectively, but the total derivative with respect to time now means following motion
along the relative streamline, and the partial derivative with respect to time now refers to the derivative

at a coordinate point relative to the rotating blade.

2.4 Steady Fluid Flow Through a Stationary Blade Row and

Steady Relative Flow Through a Rotating Blade Row

Under steady operating conditions, fluid flow through a single stationary blade row is steady and the
unsteady terms in the governing equations can be neglected. Similarly under steady operating conditions
fluid flow through a single rotating blade row is steady and the unsteady terms in the governing
equations can be neglected. However, even in a single-stage turbomachine, there is always a stationary
blade row upstream (in the case of a turbine) or downstream (in the case of a compressor) of a rotating

blade row. Usually they are spaced not too far apart and the fluid flow relative to either blade row is
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unsteady. Because of the mathematical difficulty, in practically all of the design calculations and analysis

calculations, fluid flow relative to either the stator or rotor, is assumed to be steady.

Steady absolute flow in stationary blade rows means that the unsteady terms in governing equations

(2.1), (2.14), (2.20), and (2.28) at a fixed coordinate point, say (r,0,z), are equal to zero.

In the case of fluid flow through a rotating blade row, steady relative flow means that all of the
partial derivatives with respect to time in governing equations (2.45), (2.50), (2.53) and (2.61) at a fixed
coordinate point, say (r,$,z),, with the origin of the coordinates fixed in the blade (i.e., ¢ = 8 —wt), are

equal to zero. Furthermore, since the absolute velocity V is related to the relative velocity W by

V=W+U (2.62)
or
V., =W,
V, =W, (2.63)

When the relative velocity at a relative coordinate point (r,¢,z) is steady, the absolute velocity at a

relative point, Vr,¢" is also steady with respect to the rotating blade, sois V x V.

Because the absolute flow is calculated for the stationary blade row, whereas the relative flow is
calculated for the rotating blade row, there is an abrupt change in the tangential component of the fluid

velocity, and consequently, in the streamline when the fluid motion is referred to the different coordinate
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system moving from one blade row to the next (fig. 2.3). However, the projection of the streamlines on
the meridional plane is continuous because the meridional components of the absolute and relative

velocities are continuous (fig. 2.4).

In the following presentation, as well as in computer codes, only the governing equations for steady
relative flow through the rotating blade row will be given. It is understood that when the blade row is

stationary, w =0, 0 - 0, W - V,1 - H, and ' — ®.
2.5 Viscous Terms in the Governing Equations

An analysis will now be made on the magnitude of the viscous terms in the governing equations.

Continuity Equation: For steady flow the continuity equation (2.45) becomes

V-(pW) =0 (2.64)

Equation (2.64) does not contain a viscous term. The effect of viscosity on the fluid flow comes through

the entropy increase in the flow in the following equation of fluid density:

( 2 2 )b;l S5
po _ (W -W7/2+ U2 771 —g (2.65)

a1 - w2 + ),

" The effect of entropy increase in density is quite large and consequently cannot be ignored.
Energy Equation: Of the two forms of energy equation (2.53) and (2.58), it is more convenient to use

(2.53). For steady flow it becomes
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Dl _4+1lv.@w (2.66)
P

Dt
In the core region the viscous stress and heat transfer are negligible. In the boundary layer region near
the blade surfaces and hub and casing walls, if the boundary layer is laminar, the Pr number of the fluid
is equal to unity, and the boundary walls are adiabatic walls, the viscous work term and heat transfer
term cancel each other. In actual turbomachines the boundary layer flow is turbulent and the Pr number
is different from 1, and the summation of these two terms will not be equal to zero, but the magnitude is
expected to be small. The following equation is usually considered to be a good approximation for the

entire flow region:

DI
— =0 (2.67)
Dt

Dynamic Equation: For steady flow equation (2.34) becomes

Wx(VxV)=VI-TVs+ v (2.68)
P
When I is taken to be constant on all streamlines, the magnitude of VI depends on the magnitude
of VI at theinlet. Vs is quite small in the core region, but quite large near the solid wall. For
instance the radial entropy profile at the exit of a rotor blade row may look something like that shown in

figure 2.5. From the dynamic equation in the radial direction.
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When the viscous stresses are neglected, equation (2.68) is simplified to

W x (V x V) = VI - TVs

Equation (2.69) in the radial direction is

The effect of radial entropy gradient on the radial variation of velocity is indicated in figure 2.5.

The inclusion of entropy gradient in the dynamic equations is necessary for a better prediction of velocity

variations near the solid wall.

Entropy Increase: Evaluation of entropic increase along the streamlines by equation (2.61) requires

a solution of the complete set of governing equations for viscous fluid. At the present time approximate

value of entropy increase along the streamlines may be estimated by an appropriate value of the

polytropic exponent of a polytropic process which represents the actual flow process (ref. 1). It may also

be estimated by the pressure recovery factor and the isentropic rotor efficiency obtained in experimental

investigation and tests (ref. 47). For the flow through a stator blade row the entropy increase across the

blade row is calculated from the recovery factor in stagnation pressure as follows:

T In-
-1 o

Sc—SbIR

or
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Pyo
s — 8, =R T In_® (2.71a)

¢ '7—1 P_o

[4

For the flow passing a rotor blade row, the increase of entropy across the blade row is calculated from the

isotropic rotor efficiency as follows:

Tye/Tye
8, — 8, =R L ™ b/ Ts (2.72)

T=1 1 4 ¢(Tye/Tye - 1)

where

§ = n, for compressor rotor

=1/n| , for turbine rotor

2.6 Some Remarks on the Energy Equation and the Entropy Equation

The First Law of Thermodynamics and the Second Law of Thermodynamics are two important
physical laws governing the flow of a compressible viscous fluid in a turbomachine. The following
remarks are made here regarding the energy equation and entropy equation derived from these two laws.

1. Energy equations in two different forms were described in Section 2.1 and 2.2 for flow through, a
stationary biade row and a rotating blade row rgspectively. In one form of the energy equation, equation
(2.28) or (2.58), the increase of internal energy of a fluid element along the streamline is given directly by
the heat transfe;r from the surroundings to the fluid element'; minus the work done by the fluid element

against its surroundings. The equation is the same as the one universally used in thermodynamic
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calculations, except that there is an additional work done term by the fluid element against the external
viscous force. In the other form of energy equation, equation (2.2) or (2.53), however, the increase of
stagnation enthalpy or stagnation rothalpy is given by three terms, namely, the heat transfer to the fluid
element, the work done by the fluid element against the viscous forces, and an insteady pressure term. It
shold be noted here that the work done by the fluid element against external pressure is included in the
first form of the energy equation, but not in the second form of the energy equation. (Equation (2.18)

will help to explain this difference.)
2. It should be emphasized that the heat transfer term ¢ refers to the heat transferred to the fluid

element from its surrounding fluid elements and that it is not equal to zero for the fluid element in the
viscous region, even when the flow of the fluid as a whole is adiabatic, i.e., there is no heat transfer
between the fluid and the bounding wall. For instance, in the preceding analysis of a two-dimensional
boundary layer flow, it is seen that (i) there is a positive heat transfer into the fluid element in the
boundary layer, and (ii) when the Prandtl number of the fluid is equal to one, this amount of heat
transfer into the fluid element is equal to just the work done by the fluid element against the viscous
forces acting on the fluid element, thereby keeping the stagnation enthalpy constant along the streamline.
This is a very useful result, which provides a sound basis in taking stagnation enthalpy or stagnation
rothalpy constant along the streamline in current engineering calculation for turbomachine flows.
Because of this canceling effect, it should be kept in mind that when the viscous effect on the stagnation
enthalpy is considered in the calculation, it is not correct to keep one viscous work term in equation
(2.20) or equation (2.53), or two viscous work terms in equation (2.23) and to neglect the heat transfer
term in these equations.

3. Entropy equation (2.10) or (2.61) clearly shows that the increase of entropy of the fluid element
along the streamline is made of two parts, namely the heat transfer to the fluid element q and the work

done by the fluid element against the external viscous forces as seen by an observer moving with the fluid
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element, the dissipation function ® (see eq. (2.27)). Depending on the nature of problem, § may be
positive or negative (usually positive), but & is always positive.
4. The heat transfer term § in the energy equation and entropy equation is heat transfer to the

fluid element from its surroundings due to temperature difference. The viscous term in the energy
equation and entfopy equation is work done by the fluid element against the viscous force acting on the
fluid element. They are independently evaluated according to their own definition, which is set up to the
heat transfer term and work done term in the First Law of Thermodynamics (eq. (2.15)). In light of the
preceding argument, it is easy to see that the frequently-appearing saying “work done by the frictional
forces acting on the fluid element turns into frictional heat and is added to the fluid element,”

dH/dt = F,-V, T ds/dt =F, - V (for instance, eq. (3.19) on p. 51 of ref. 45 and equations in the

middle of p. 277 of ref. 46) are incorrect.
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CHAPTER 3

GOVERNING EQUATIONS FOR FLUID FLOW ALONG RELATIVE STREAM FILAMENTS
3.1 Following Fluid Flow on Relative Stream Surfaces

In order to solve the steady three-dimensional irrotational or rotational flow in a relatively simple
manner, an approach was taken in reference 3 to obtain the three-dimensional solution by an appropriate
combination of mathematically two-dimensional flows on two different kinds of relative stream surfaces
(figs. 3.1 to 3.3). The first kind of relative stream surface is one whose intersection with a z-plane, either
upstream of the blade row or somewhere in the blade row, forms a circular arc (fig. 3.1). The second
kind of relative stream surface is oneAwhose intersection with a z-plane, either upstream of the blade row
or somewhere inside the blade row, forms a radial line (fig. 3.2). These two kinds of relative stream

surfaces were designated as stream surface S; and S,, respectively.
STREAM SURFACE OF THE FIRST KIND—S,

Shown in figure 3.1 is a stream surface of the first kind formed by fluid particles lying on a circular
arc ab of radius oa upstream from the blade row. It is a generalization for three-dimensional flow

from the cylindrical surfaced usually considered in the two-dimensional design of turbomachines.
STREAM SURFACE OF THE SECOND KIND—S,

A stream surface of the second kind is shown in figure 3.2. The important surface of this family is
the one that lies about 'midway between two adjacent blades, and divides the mass flow in the channel

formed by the two blades into approximately two equal parts. This surface is designated as the mean
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stream surface or mid-channel stream surface Sz,m' For blades with all radial elements, such as the one
shown in figure 3.2, it is convenient to consider a mid-channel stream surface formed by fluid particles
originally lying on a radial line ab upstream from the blade row. Otherwise the radial line is chosen
about midway in the passage with the fluid particles originally starting out from a curved line upstream

from the blade row as shown in figure 3.3.

In general, both of these two kinds of stream surfaces are employed in the solution of the three-
dimensional problem flow field in turbomachines. The correct solution of one surface requires some data
from the other, and consequently, successive solutions between the solution of one of these two surfaces
are involved. Yet, the solution of flow on each surface is manageable with the efficient technique for

mathematically two-dimensional problems.

Relations Among Relative Velocity of Fluid, Coordinates

of Stream Surface, and Normal to Stream Surface

In general, the coordinates of the relative stream surfaces, the components of the unit normal n

(figs. 3.1 and 3.2), and the velocity components are related by the following equations:

S(r, p,2) =0 (3.1)
ndr + nyd¢ + n,dz =0 (3.2)
nW, +nyWy + n,dz =0 (3.3)
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3.2 Equation Governing Fluid Flow Along S,

Stream Surface of S, Stream Filament

Because S, stream surface involved in the three-dimensional flow calculation is always a general
twisted surface, whereas the S, stream surface involved can be a surface of revolution, the S, stream

surface will be considered first in the following treatment.

When the fluid motion on S, stream surface is followed, equations (3.1) and (3.2) are used to
eliminate one of the three independent variables, the ¢ coordinate. That is, any quantity q on S, is

now considered as

q= f [r’ z, 50(1', z)] (3'3a)

The change in the quantity q along S, due to a small change in r while z is held constant is (see

fig. 3.4)

@=@+ﬁ%& (5.4
or dp or

Substituting dp/dr from equation (3.2), for dz = 0, into the preceding equation gives

3 _%_Tlax (3.42)

r o n¢r3¢

in which the bold partial derivative sign is used to indicate this differentiation following the stream

surface.
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Similarly,

%9 _0%a_M1d (5.5)
z Jz ngr dp
Along streamline on S,
De_w i, w3 (3.6)
Dt or Oz

Continuity Equation
When the fluid motion is followed along the S, stream surface and equation (3.4) and (3.5) are

used, the continuity equation for steady relative motion becomes

apW apW
1 (p l'r) + (p ') = pC(r, z) (3.7)
r Or oz
where
aw ow ow
C(r,z)=—i+ n, l'+nw »+n, 1t (3.8)
nr Op Op dp
This continuity equation is put into the following form:
a(rBpW,) L2 rBoW,) _ o (3.9)

or 0z
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by using an integrating factor B, which is related to C by the following equation:

DlnB:wr dlnB + W, dlnB _ (3.10)
Dt or 0z
or
B_ 1t __(¢C
In_ = —LiCdt = ILinx (3.11)

1

Equation (3.9) is the necessary and sufficient condition that a stream function ¥ exists. ¥ is

related to velocity components by

— = rBpW, (3.12a)
or
¥ _ Bow, (3.12b)
az

The difference in ¥ at two points j and k on the S, surface is

gk —wi= f;‘d\ll = f;‘er(w,dr ~ W,ds) (3.13)

The preceding equation indicates that B is proportional to the angular thickness of a thin stream
filament whose mid-surface is the stream surface S, considered herein and whose circumferential
thickness is equal to rB. Indeed, if the mass flow into and out of the element of such a stream sheet (cut
between two planes normal to the z-axis, and a distance dz apart (see fig. 3.5)) is equated to zero, and

the distances dr and dz approach zero as a limit, the following equation is obtained:

38



arow,) L3 oW _ | (3.14)
or oz

Comparing this equation with equation (3.9) and considering the mass flow relations show 7 to be
proportional to rB. This proportionality means that physically B is a quantity which is proportional
to the angular thickness of a stream filament whose mid-surface is the S, surface considered herein.
With this interpretation, B is imrﬁediately seen to be closely related to the angular distance between two
adjacent blades. In actual calculation, only the ratio rB to (rB), or 7 to 7 isimportant. In general
it is easier to obtain the variation in rB from the distance between adjacent streamlines obtained on §;

surface than to evaluate B/B, by equations (3.11) and (3.8) using data obtained on S, surfaces.

It is seen from the preceding section that in following the fluid flow along a stream surface, a
consideration of conservation of matter automatically changes the fluid flow on the stream surface to the
fluid flow along the stream filament. In general three-dimensional flow, the thickness of the stream
filament changes with respect to the two coordinates r and z. In the case of S, stream filament (see
fig. 3.6) it is easy to see that: (1) in the radial direction, r increases with the radius as the
circumferential distance between the adjacent blades increases in the radial direction and (2) in the flow
direction, due to the blade thickness, 7 decreases as the fluid enters the blade channel and then increases

as the fluid moves toward the trailing edge of the blade.

Dynamic Equation

For general rotational flow, the dynamic equation (2.69) in the three perpendicular directions are

W, (a(ver) aw,] ow, [aw, ) aw,] __al, qe (3.15a)
r ar dp 0z or
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oW, oW '
w2 o121 (@150
r dp dz

—w,{aw’ _ W, N W¢[1 QW, B 8W¢] _ 9 g8 (3.15¢)
r dp 0z

In following the motion on S, equation (3.15) are reduced to the following forms by using equations

(3.3) to (3.6):

W, 3(ver) ‘w, oW, _OW,| a1 pd (3.16a)
r OJr oz or or or
D{V,r
Fr = (Vor) (3.16b)
Dt
—w,[aw’ _ Wl W ofVer) _ _ LA S 3 (3.16c)
or or r Oz 0z oz
where F is a vector having the unit of force per unit mass of gas defined by
F—-|L11%), (3.17)
Dgpr o¢
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3.3 Principal Equation for Fluid Flow Along S, Stream Filament

By considéring the fluid flow along an S, stream filament and using the partial derivative of fluid
quantities as functions of two independent variables r and z, the principle of conservation of matter
leads to the continuity equation given by either equation (3.9) or (3.14), which are the necessary and
sufficient conditions for a stream function ¥ to exist. The relative velocity components Wr and Wz
are related to the partial derivatives of ¥ by equation (3.12). When this relation is used, the dynamic
equation in the radial direction can be used to form a principal equation governing the fluid flow on S,
stream filament. The solution of the fluid flow on S, stream filament is concentrated on solving this
principal equation for the single dependent variable ¥. It is much better than solving a number of
dependent variables from a set of partial differential equations. The form of the principal equation will

be given for the direct problem and the inverse problem in the next two sections.
Principal Equation for Direct Problem

In the direct problem the shape of the S, stream surface is given. In practice the shape is specified
by a number of coordinate points lying on the surface. The components of the unit normal are then

calculated by equation (3.2) as follows:

Along the intersection of the S, surface and a constant-z plane

i r[ﬂ] (3.18)

and along the intersection of the S, surface and a constant r-surface
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B _ _r[i‘*;]. | (3.19)
ng Jz =r,

Components n,, n, and n, are determined by the preceding two equations along with the following

equation:
nz + n:, + n: =1 (3.20)
Let
j | p= b (3.21a)
- n, F,
v = 5= F (3.21b)
) n, F,
: From equation (3.3)
W, = —(uW, + vW,) (3.22)

Using equations (3.21a) and (3.21b) and other basic relations, the dynamic equation in the radial

direction can be transformed into the following form (ref. 48).
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(1+u"‘) (1+y +u2)__a_zw_+N§'.+M§'__

a? | az? dr oz

where

__(1+”2 alnr_lﬁ_*__l_[al
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o ar
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It is seen from the coefficients of the second order partial derivatives that when W > a or <a,
equation (3.23) is hyperbolic or elliptic.
Procedure of Solution for Direct Problem
In the direct problem of fluid flow along the 8, stream filament the variation of filament thickness
7 (or rB) relative to its inlet value and equation (3.21) are given. There are nine independent equations
governing the fluid flow, namely equations (3.12a), (3.12b), (3.22), (3.16b), (3.21a), (3.21b), (2.67),
(2.71), or (2.72). The nine independent variables to be determined are W, W o W.,F,F o’ F,LS,
and ¥. (It may be noted here that, when equation (2.67) instead of the complete viscous equation (2.66)
is used for the energy equation in the calculation, there are only three independent equations among the
dynamic equations in three directions and the energy equation, because the latter can be obtained from
the former and the normality conditions between F and W.) The procedure of calculation is as follows:
(1) Starting from an estim#téd ¥ field at the beginning of calculation or from the ¥ field
determined in the previous cycle, compute Wr and Wz from equations (3.12a) and (3.12b),
respectively.
(2) Compute W " from equation (3.22).
(3) Compute Vy=W o T ur and then Fw from the dynamic equation in the circumferential
direction, equation (3.16b).
(4) Compute Fr and Fz from equations (3.21a) and (3.21b).
(5) When the approximate equation, equation (2.67) is used for the whole flow region, stagnation
rothalpy I is taken to be constant along all streamlines.
(6) For an invicid isentropic calculation, entropy s is taken to be constant over the whole region.
For an analysis and design calculation, which tries to approximate the real flow as closely as
possible, a certain empirical variation along the streamline with the difference between the exit
and inlet value given by equations (2.71) or (2.72) is considered. In transonic turbomachines the
abrupt entropy increase across the shock is also taken into consideration.

(7) Solve ¥ from the principal equation (3.23).
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Repeat calculations 1 to 7 until the desired accuracy is reached.

Principal Equaﬁon for Inverse Problem

In the inverse or design problem of fluid flow along the mid-channel S, filament the variation of the
filament thickness r (or rB) relative to its inlet value is empirically determined by the desirable blade
thickness distribution. (In three-dimensional solution the S, filament thickness is taken from the
solution of 8, filaments obtained in a previous cycle.) Now there are only seven independent equations
governing the fluid flow, namely equations (3.12a) and (3.12b), (3.16a) to (3.16¢), (c), (2.67), and (2.71)
or (2.72), two less than that in the direct problem. On the other hand, however, there are nine

independent variables to be determined.

The differential of the coordinates of the S, stream surface are related to the F components by

Fdr + F rdp + Fydz = 0 (3.24)

In order for this differential equation to lead to an integral surface of the form represented by

equation (3.1), F must satisfy the following condition of integrability:

F-VxF=0 (3.25)

Writing equation (3.25) in scalar form and using the relations (3.12a) and (3.12b) gives
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9 [_F_'_] =9 [_F;] | (3.26)
ar |F,(r) 9z |F,(r)

By integrating along a constant r-line equation (3.26) gives

F F F
=2+ 91" |dz (3.27)
F_r F r 55 Or er

If Fr=0 at

F,=Ff° l[ildz (3.28)

Thus, there is only one degree of freedom left to the designer. Of all of the appropriate ways of
utilizing this degree of freedom, the one found most useful is to prescribe an appropriate variation of Vg
or Vor on the S, surface, i.e., the following equation is prescribed:

Vg = G(r, 2) (3.29)

The principal equation formed by combining the continuity equation and the dynamic equation in

the radial direction is
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From the coefficients of this second order partial derivative, the principal equation (3.27) is seen to be

hyperbolic or elliptic then the meridional velocity W, =

of sound.

In turbomachine design the Sz,m surface may be

,| W: + W: is greater or less than the speed

specified in some manner other than

equation (3.29). For instance in the case of an axial-flow turbine, in order to design the cooled rotor 54

blades with no or minimum radial twist, the following

stream surface:
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W
_VTIE = g,(2) (3.31)

In the case of a centrifugal compressor, in order to design the impeller blades with minimum deformation

and stress during operation, the mid-channel S, stream surface may be specified to consist of all radial

elements, i.e.,

e — 1l (3.32)

In general then, the S, strea.m- surface may be specified by the following relation:

wlp__ r, Z
-w—"‘g(a ) (3.33)

By using equation (3.33) and other basic relations the dynamic equation in the radial direction can

be transformed into the following form (ref. 48):

2 2 2
: w wWW W o+ W
(1+g’)1—_{ﬁ—2(1+g’) rs8t - £ '§W+N§+Ma-o
32 ar2 ‘82 010z 82 &2 ar oz
(3.34)

where
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Procedure of Solution for Inverse Problem

The procedure of calculation of Sg’m stream filament is. as follows:

(1) Starting from an estimated ¥ field at the beginning of calculation or from the ¥ field
determined in the previous cycle, compute Wr and Wz from equations (3.12a) and (3.12b),
respectively. |

(2) When (Vgr) is prescribed, compute W " from V,. When (W p/ Wz) is prescribed, compute
w ® from equation (3.30) and Wz is computed from step 1.

(3) Compute F " and Fz from, respectively, equations (3.16b) and (3.16c).

(4) When the approximate equation (2.67) is used for the whole flow region, the stagnation rothalpy
I is taken to be constant along all streamlines.

(5) For an invicid isentropic calculation, entropy s is taken to be constant over the whole region.
For an analysis and design calculation, which tries to approximate the real flow as closely as
possible, a certain empirical variation along the streamline with the difference between exit and
inlet value given by equation (2.71) or (2.77) is considered. In transonic turbomachines the

abrupt entropy increase across the shock is also taken into consideration.
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(6) Solve ¥ from the principal equation (3.30) or (3.34).

Repeat steps 1 to 6 until the desired accuracy is reached.

3.4 Principal Equations for Fluid Flow Along S, Stream Filament

The S, stream surfaces near the hub and casing walls are usually considered to be surfaces of
revolution. If the 7radius of the h\li) wall increases (or decreases) in the flow direction while the radius of
the casing wall decreases (or increases) in the flow direction, the S, surface in the mid-span region may
be close to surface of revolution. Just like in the case of S, flow, the continuity equation requires that
the mass of fluid flow in a thin stream filament be conserved.

The flow equations expreésed by a set of orthogonal curvilinear coordinates (¢, ¢) (fig. 3.6) are as

follows (refs. 2 and 4):

Continuity Equation:

W w '
o\re !') + a("’ w) — (3.35)
ot dp
¥ — W relations
EI'_ = —-1pW, (3.36a)
at
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1¥ _ w, ' (3.36b)
E% |

Dynamic Equation:

ow aw w
i ' -w—-[ p+2w]sina=i[l_a_l_—zﬁ]=0 (3.37)
r dp al r W,lrdp r dy
Principal Equation:
AN [“i“" - a““]fw. 4 1% _y (3.38)
e r gt )at 23,0
where
N—lﬂg + 122 + 2wrp sino + l[lﬂ - fﬁ]:o
plotaot 30p dp Wilrdp roe

For general S, surface or filament, where the surface twists in t;he circumferential direction, one
may formulate the governing equation with respect to the coordinates as follows:
(1) For turbomachines with axial inflow and axial outflow any quantity q on the S, surface is
considered a function of ¢ and z.
(2) For turbomachines with radial inlet and radial discharge, any quantity on the S, surface is

considered a function of ¢ and r.
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(3) For turbomachines with axial (or radial) inflow and radial (or axial) outflow, any quantity on
the S, surface is considered a function of (p, ).

(4) Same as that in case (3) but considered a function of noncurvilinear coordinates x! and x2.

H
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CHAPTER 4
THREE-DIMENSIONAL FLOW EQUATIONS EXPRESSED IN TERMS OF
NONORTHOGONAL CURVILINEAR COORDINATES AND CORRESPONDING

NONORTHOGONAL VELOCITY COMPONENTS

Equations governing the fluid flow along S, and S, stream filaments were first derived in
references 2 to 4 employing orthogonal curvilinear coordinates (r, i, z) or (p,¢, n). These equations have
been adopted in treatises on turbomachinery (for instance refs. 45 to 47), programmed into computer
codes (for instance, refs. 8, 10 to 19, 22, and 23) and used in analysis and design of turbomachines (for
instance, refs. 21 to 26). During calculation of actual engineering problems it soon becomes evident that
in order to improve the relatively low accuracy of numerical differentiation (ref. 27) occurring at grid
points, unequally spaced near a curved boundary the coordinate line may coincide with the leading and
trailing edges of the blade (see fig. 4.1) and a computer code may be used universally for turbomachines
of different geometry. Work to employ general nonorthogonal curvilinear coérdinates for the calculation
of fluid flow along S, and S, stream filaments began in the sixties (refs. 28 and 29). Presented in the
following sections are some basic relations of general nonorthogonal curvilinear coordinates, equations
governing fluid flow along S, and S, stream filaments employing general nonorthogonal curvilinear

coordinates and the methods of solution.
4.1 General Curvilinear Coordinates in a Three-Dimensional Space

Let (yl, v, y3) be the usual orthogonal Cartesian coordinates of point P and (xl, x3, x3) be its

nonorthogonal curvilinear coordinates. In general the square of the element of arc ds is
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where g is the covariant metric tensor of the three-dimensional space

avk ayk
_ aykay ey =g (k=123 (4.2)

ij — —

axt ax

gij = Qgﬁgjj cos Ou (4.3)

where 0ij is the angle between the two basic vectors ¢; and €.

The lengths of the elements of arc measured along the coordinates lines of our curvilinear systems,

dS(i) = y8i; dxi (4'4)

The element of volume dv is

dv = Jg_ dx'dx?dx3 (4.5)

where g is the determinant | Sij‘ . Let e denote the reciprocal base vectors defined by
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=3 7% | (4.6)

The corresponding contravariant metric tensor of the three-dimensional space is

N QR R (a7)
g

where GY is the cofactor of the element 8ij in g.

For both systems it is convenient to use base vectors of unit length defined by

(4.8)

wee oyl (4.9)

A vector B in the three-dimensional space is now either expressed in terms of the base vectors ¢

and w;, or the reciprocal vectors e and ui, as follows:

B = b’ei (4'10)
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B = By : (4.11)

B = b (4.12)

B = B! (4.13)

where bl and B! are, respectively, the contravariant components and the physical components along e
of the vector B; and b; and B; are, respectively, the covariant components and the physical
components along el of the vector B. The covariant component and its corresponding physical

component can be calculated from the contravariant component with the following formula: -

:

Finally the differential operators in general curvilinear coordinates are as follows: the gradient of a

scaler I is given by

vi=é ' " (4.15)

ox'

the divergence of vector W is
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V.W= _l_a_(fsili) (4.16)
ax

R (vy avz]
J;kaxz ax3
g L[ %] - (4.17)
Jg'kax“ ! '
& = 1 {9 _ a"l]
' J;Laxl ax? 7

4.2 General Curvilinear Coordinates on a Surface

In the investigation of fluid flow along an S; or S, stream filament the governing equations are
written for the fluid flow on the mid-surface of the filament. chh a surface is a two-dimensional
manifold embedded in a §hre&dimensional enveloping space and is usually described by coordinates u®
(a = 1, 2), called the curvilinear or Gaussian coordinates on the surface.

Under this notation the relevant equations corresponding to those in the preceding section are as

follows:

57



ds? = 8,p dx® dx? (e B=1,2)

where a af is the covariant metric tensor of the surface

8a8 = ‘/aaaapﬂ cos 0aﬂ

The lengths of elements of arc measured along the coordinate lines are

ds(a) = Ja,a dx*®

An element of area dA is

dA = J: du! du?

where a is the determinant |a,g|.
— ‘ — : 20
a = |agg| = a1y 89381070y
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(4.21)
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The contravariant metric tensor of the two-dimensional surface is

a% = % . &f = 2P
all =a,, +a= (311 sin2012)_1 (4.24)

— ¢ a = 25 Y1

In the investigation of S, and S, flow employing nonorthogonal curvilinear coordinates the two

2

Gaussian coordinates, u! and u? on the surface, are selected to be the same as two of the three

curvilinear coordinates in the three-dimensional space. For instance, in the case of S; flow, x! and x?
shown in figure 4.1 are two nonorthogonal curvilinear coordinates of the three general curvilinear

coordinates referring to the three-dimensional space and are the same as the two Gaussian coordinates

which refer to the two-dimensional surface. The third coordinate x3, which refers to the three-

2 3

dimensional space, may be selected as normal to the x! — x? surface. In that case W3 =w

In the following, distinctions between (ul, uz) and (x}, x2) will not be made, but e @ Bap ® (e,
B =1, 2) will be used for the S, surface, whereas €;, g;;, 8 - - . (i,j =1, 2, 3) will be used for the three-
dimensional space in which the surface is embedded. For a given problem, a g are computed from

equation (4.19) through numerical differentiation.
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For vector W on the S, surface the following are obtained:

wy=W.e =ayw +apw =ya, (wl + W cos 012) (4.26)

W2 = w . 32 = 321 wl + 8-22W2 = Vazz {Wl cOo8 012 + W2)

VJ1 = Vau w; = (W1 + W2 cos 012) + sin 8, (4'27)

W, = ‘/az_zwz = (W1 cos 8,5 + Wz) + sin 0,

The preceding equations can also be obtained by the geometrical relations indicated in figure 4.2.
4.3 Basic Equations Governing Fluid Flow on S, Surface of Revolution

General Equations: Denoting the normal distance between two adjacent surfacc- of revolution by 7,

the continuity equation of steady relative flow along the stream filament is

vV . (rpW) =0 (4.28)
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Substituting equation (4.16) into (4.28) results in

1 . 2 H )
a(rpw Jaz—zsm 012) 4 a(TpW Vau sin 012 -0 (4.29)
ax! ax?

This equation can also be obtained by considering the mass flow into and out of the elementary volume

(ds,, dsy, 7) (see fig. 4.3).

When expressions (4.10), (4.15), and (4.17) are used, the dynamic equation (2.53) in the e?

direction is
—wlel X faes = [ﬂ. - T is_] el (4.30)

ax? ax?

When equation (4.10) and the following relation between the absolute and relative vorticities are used:

VUxV=VxW+ 2w (4.31)

the dynamic equation in the e? direction for steady relative flow is (fig. 4.4).
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ow ) al : )
W [_z _ _ﬁ]_zw inole s (4.32)
axl ax2

By using equation (4.26) the preceding equation becomes

8 (W' + WPeos ,5) fan; - %[(W‘ws 0+ W) o)

2
ox X o (4.33)
. . apy | al gs
= — 2\/311322 w sino sinfy, + = — | — — T
w! | ax? ax?

This equation can also be obtained by applying Stokes theorem to the surface element of figure 4.3.

Using relations (4.10) and (4.15) the energy equation (2.51) for steady relative flow becomes

P_Izw-vr:wiei-_a_l_.eizwiflzo (4.34)
Dt ax! ax!
or’
1 2
pi_w o W A _,  (4.35)

Special Forms of Flow Equations on 8,:
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A number of useful special forms of equations presented in the preceding section can be obtained by

1

selecting a number of different x" - and x2-coordinate lines, as follows:

(a) x!-lines coincident with streamlines. In this case W? = w? =0, W! = W, equations (4.29),

(4.33), and (4.35) simplify to, respectively,

_Z {roWl//a sin0)=0 4.29a
o\ Y222 12 ( )

(4.33a)
(ot pa
W | ax? ax?
_al =0 (4.35&)
ax!

If at the same time x? is taken to be normal to x?, the preceding equations are further simplified with
cos 6, =0 and sin b, =1.

(b) x'-line coincident with the meridional coordinate line ¢ and x? = p. In this case, ,, = 270°,
w! = W, w?=_ W, H =1, Ja;;= r, equations (4.29), (4.33), and (4.35) become those used in
references 4 to 9.

2 = rp and x! = z, equations (4.29),

(c) S, surface is a cylindrical surface of radius r. If y = x
(4.33), and (4.35) become those of plane flow as used in reference 54. If, however, x'-line is taken to be

coincident with the streamline W! = W, W2 = 0 and the equations are further simplified to

63



il (rpW ‘/an sin 012) =0 - '(4.29¢)
dax

a_‘;(w \/an = %(w 1/"'22 cos 012) + ¥ _a__u [al - T _?_E] (4.33¢)
X

Wa_y dy

— =0 (4.35¢)

Furthermore, if x’-line is taken to be normal to x! -line, an interesting result is obtained—the quantity
W a,, is an invariant along an x? - line in the case where the variations of I and s along the x2-
line are equal to zero.

As seen in the preceding equations, dynamic equations (4.33) and (4.33a) contain the variations of 1
a.ndr s of the fluid in the e, direction. When they are uniform at the blade inlet and no change occurs
along the streamline, they are uniform everywhere—this is usually assumed on 8, flow calculation and
will also be assumed in the following discussion of methods of solution. In cases where their derivatives

are not very small, they should, of course, be properly considered.
4.4 Methods of Solution for S,

When the x!-lines are corrected during calculation to coincide with the streamlines, equation (4.29),

along the x!-line, gives
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(1 E; sin Olz)i ‘ (4.36)

7 "822 Sin 012

pW = (p W)

in which ‘/322 and #,, are computed after each correction of the streamline coordinates. For

nonisentropic flow of a perfect gas

p =[h]?i_1 s_;'izl_'x~l (pW)? _»1_116_’—; (4.37)
2 (e loraf

The values of p and W can be determined from their product by rewriting equation (4.37) as (ref. 3)

2
2= [1 - _";]ﬁ (4.38)
22

where

y-Pf. R (4.39)
Pi

65



—2__!
=11 Wl R
pi/a;

The table in reference 3 can then be used find T (i.e., p) from the known value of ® (i.e., pW). W is
then computed from pW after p obtained.

When the derivatives of I and s are neglected, equation (4.33a) yields

_§_2(W \/311) = _a_(W \/322 cos 012) - 2‘/311522(» sin ¢ sin 0, (4.41)
dax

ax!

This equation is used to obtain a new set of values of W at the grid points by integrating along the
x2-lines with the right side of the equation computed from known values of the preceding cycle. The
integration may be started from the mid-channel streamline as in references 4 to 6 or from the stagnation

streamline. The mass flow along the x2-line is then computed by

. x? . 2
m = I(x’)o rpW sin 6, y/ayydx (4.42)

A comparison between the computed mass flow and the correct mass flow leads to new values of
streamline positions. This process of correction should be applied at each station along the streamlines,
quite similar to the method employed in references 4 and 6. It may be noticed, however, that with the

use of the present nonorthogonal curvilinear coordinates the tangency of the relative fluid velocity at the



blade surfaces is automatically satisfied. This method, of course, can also be employed to modify existing

blading or to design new blading as in references 4 and 35.

If it is desirable to keep the x!-line fixed during calculation, then

(1) pW! along the x!-line is corrected by the complete continuity equation (4.29).

(2) compute pW by

ow = [ow + bwef - dhow)lowkeos 0,,] * (443

(3) integrate (W2 ‘/au) along x! -line by

M=—2a

11812 w Sin g sin 012 + _.a_]‘[(w1 [of0 1 012 + wz) "&22]
ox

2
Ox (4.44)
- _a_[Wz ‘/aucos ‘912]
ax?
(4) compute mass flow along x’-line by
2
. 1 _: 2

m = Jl’((x’)o TpW" sin 8,4 \/a;,dx (4.45)

(5) correct the W! values at the grid points in the same manner as in the previous case.

67



The method described above is quite similar to that used in references 4, 6, and 54 except that the
solution of the latter is extended in the circumferential direction from the mean streamline by using a
Taylor series consisting of three terms. Whereas, the solution of the former is extended circumferentially

to successive streamlines by a Taylor series of only two terms. -

In general the continuity equation and the dynamic equation are to be solved simultaneously through
the use of the stream function ¥. Equation (4.29) is necessary and sufficient condition that a function ¥

exists with

E_I’_ = —rsz a;; 8in 0
1
ox ' (4.46)
_a_\IJ_ = rle ‘/an sin 8,
ox? :

Substituting equations (4.46) into (4.33), the following principal equation governing the fluid flow along

the S, filament of revolution expressed in terms of nonorthogonal curvilinear coordinates x! - and x? is

obtained.
cos 0
_1_321‘2_2” 12 ‘7]2‘1’2+_1_32'1’2+__J_‘7_'I'_1+__K3%=M (4.47)
813 a(xl) \’3118'22 ax ox 892 a(xz) a), ox ag; ox
where
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alnwan/an T sin 012) N cos 0,,0Inr N 1 9,5
. :

JZ;ax \/;;;axz sin 012,/1—12_2 ax?

K = aln(«azz/au 7 sin 012) + cos 0,5, 0ln7 N 1 9,
agq OX? Van ax! sin 8, yay; ax!

cos 8 cos 0
M= 1 dlnp_ 120lnp| 1 0¥ 4 1 dlnp _ 120lnp

1 2 1 2 1
ay; 9% a; Ox [yfa; 9x agy OX a;; Ox
1 . .
+ __Eqi — 2wrp sin ¢ sin? 0,2
ax?
ag9

Equation (4.47) may be considered as a generalization of the principal equation (3.38) in which the
orthogonal curvilinear coordinates (¢, ) are used. When x! and x? become ¢ and p, respectively,

equation (4.47) reduces to equation (3.38).

When the ¥-derivatives are evaluated with suitable numerical differentiation formulas, including
those at the unequally spaced grid points (ref. 27) the resulting set of a large number of algebraic
equations involving the unknown U’s at the grid points may be solved either by the direct matrix
method (refs. 3, 4, 8, 10 to 12, and 27) or by the relaxation method (refs. 3, 4, 10, 11, and 27). The
boundary conditions of the periodic variation of flow and the flow angles at the inlet and outlet stations
are to be satisfied in the same manner as described in references 4 and 8. Inasmuch as fixed (xl, x%)

coordinates are generally used in solving the principal equation (4.47),J and K are then a function of a
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fixed geometry and have to be computed only once. The exclusion of derivatives W' and W2 on the

right side of equation (4.47) is helpful in the convergence of the solution.
4.5 Equations Governing Fluid Flow on a General S, Surface

Vorticity Equation and Dynamic Equation: In general, the problem of fluid flow along S, stream
filament is treated in the same manner as described for S, stream filament in the preceding sections.
But there is an important difference in the S, surface inverse problem in that the shape of the S,
surface is known only after the solution is obtained. Because of this and also for the elimination of the
angular derivatives in the governing equations, the independent variables, i.e., the nonorthogonal
curvilinear coordinates x'! and x? are selected to lie on the meridional plane (see fig. 4.5) while
following the fluid motion on the S, surface in exactly the same manner as was done in references 3, 10,
and 11 in which orthogonal coordinates z and r on the meridional plane were used. The third
coordinate x° for three-dimensional flow is chosen to be the angular coordinate , which is the same as
that used in the cylindrical coordinate system previously employed in references 3, 10, and 11.
Corresponding to this choice of x3, \/g; =r,g= r’a, J;S?= rt, w3 = W‘p, wd = Wp <, V3=

3 . 3 —
Vg v =V +r, w3=wp, w3=WPr,V =V, and vz = Vgr.
It was found in references 2 and 3 that it is more convenient to use the absolute vorticity than to use

the relative vorticity in treating the relative flow on S, surface. Under the present nonorthogonal

curvilinear coordinate system, the three contravariant components of V x V (eq. (4.17)) becomes
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o 1 [l o
r‘/; | ax? dp

a1 ow, a(v”r) | (4.48)
rfal® o]

¢ = 1 [9wy 0wy
r‘/;L ax! x?

By using these expressions, the three nonorthogonal dynamic equations in the e; directions are

ax! ax? r | dp ax! ax! ax!

w2 aW2 _ awl] _ w(p awl _ a(VGr) — 21_ _ T_ai (4.49&)
V“zz[

W, a(Ver) awy|  wifow, 0w _ a1 _ . s (4.49b)
r | ax2 ] faloxt & ax? ax?

wt|ow,  o(Ve)| w2 |a(Ve) _awa| _ a1 _ . as (4.49¢)

‘/;:1— 9 ax’ ag | O’ %] o o
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Alternatively these equations may also be obtained by using the following expressions of the rectangular

components of W and V x V in the ¢!, e? and e® directions (see fig. 4.2).

W, = Wlsin 0,5, Wy = Wisin 0,5, W, =W, (4.50)
W
d|V,r aw
B¢ =( a‘ufl)SiH 0y = — ( o) - —
r\/“zz axz ago
| (4.51)

1 [owy  3(Ver)

r \/311 ap axl

)
‘/anan gin 6, ox! ax?

d = ( 32252) sin 03 =

11
!

&4
I

We notice that the form of equations (4.49) and (4.51) are quite similar to equations (19) and (75),
respectively, of reference 3 employing orthogonal curvilinear coordinates (z, r, @), but that the w’s are

now more complicated covariant components of the relative velocity W.

With different choices of x' - and x2 -coordinate lines suitable for different problems, the general
form of equations (4.49) reduces correspondingly to a number of special forms. For instance, if it is

selected that

(1) xl-line is coincident with the projection of the streamline on the meridional plane, then
0, = o, w2 =o, w! = Wg and w; = \/311 W, wy = W:‘/an cos 8,,, and equation (4.49)

becomes
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W o Wejan) _ ove)| _ a1 _ e

r dp a¢ a4 ot

a

r ax? : dp 1/311 ‘ 8x2

(4.52)

W, a(w!Ja—l:) _ a("o‘) _ 3l _ g

v /311 dp at dp dp

(2) x!-line is coincident with the projection of the streamline on the meridional plane and x’-line to
be radial line normal to the z-axis, then 8, =¢,0, =0, 68,, =90° —

a = ‘/auam cos 0, wy = W, 1’522 sin ¢, equation (4.51) becomes
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a1 fdve) o(W oz sin o)
r \/811322 cos ol OF dp

- . a(w, [a:) K\Z) | (4.53)
r \/anan cos o { dp Gt
3lW,vya22 sin o W, Ja
o e
T ‘/auazg cos o l at or

and (4.49b) becomes

W, |a(Ver) a(w, {az sin ”12) _ W a(w, yezs sin "12) _ a(w, \/‘:1:) _9l _q0s (4.54)

r| or dp o, ot ar a o

and (4.49a) and (4.49c) remain unchanged. Equation (4.54) may be used to evaluate the change of W,
along the r-coordinate lines for axial-flow machines.
Under this coordinate system, the correct expressions of V xV inthe 1, p and z directions in

terms of the rectangular components WQ and W p O V, are
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8, =Elsine +52=toncl 1 aAve) 1 afvel L1 W IW gin o

r /322 or sin M/;: at sin ¢ 3¢ EY

aw W AW
Bl T ' (4.55)
at T or

811 m cos 0 fagy

equation (4.51) reduces to

g1 o) o{w? )
Tya11a,, ! ox? %

fd=_ 1 'a(wlsl‘;)_a(Vor
d¢

T ya;)8;; | ax!
&= 1 a(w2 Va”) _ a(wl V“u)
axl ax2

—

(4.56)

and (4.49) reduces to
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w oW o) dlwiyen)l wolawien) ave) e e

1/522 ax! ax? T dp ax! ax! ax!

W, |a{ve) oW ol wi |olwe o) AW )| et e
r 2 dp

ox 1,&11 ax! ox? ax? ax?

wilolwi o) alve)|  wa |alve) _ oW em)| ot _ 0

1 2
Vau 9 _ Ix agl 9x ¢ i 9

(4.57)

If 9,,=90° and 8, =8, =0, then ya;, = {ap; = 1, equations (4.55) and (4.56) reduce to,
12 1 2 11 22

respectively, (19) and (95) of reference 3 in which the orthogonal cylindrical coordinates r, #, z are used.

(d) x*-line is normal to x! - line and x!-line is coincident with the projection of streamline on the

meridional plane, then 8, =8, = o, w?=o, w! = W', w, = W, \/au, wy =0, J: = \’311322 and

equation (4.48) simplifies to
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¢ =

ao 1 B(W]‘j;l_l) _ alve) (4.58)

and correspondingly

1 1 a(v,r)

{1}

2
agy Ox

o (AW _ alver

= (4.59)

‘/81_1 dp al

1] )
2
V211222 9x

It is interesting to notice that in the present coordinate system the components of the absolute vorticity

1 and E® contain only one term each, and that for flow, in which the absolute vorticity remains zero,

1l

both V,r and W! ‘/au remain constant along the x2 - line, while w! a,; must vary with respect
to the angular coordinate y according to the variation of Vor with respect to the meridional
coordinate ¢ as the fluid moves through the blade passage. In this coordinate system, equations (4.49)

simplify to

17



Wp a(W. J;:) B a(V,r) _ a1 _ TEE (4.60a)

r dp at at at

w (¥, o)
0 B(Var) N Wy a\Wyyay) _ a1 g 3s (4.60b)
ot o, ad

W, a(wl \/8_1:) B a("o‘) _ 9l _pos (4.60c)
J;: do ad do dp

4.6 Governing Equations for S, with Independent Variable ¢ Eliminated

The unit vector normal to the S, surface is expressed as

n= niei = Niui (4.61)
the orthogonal relation is expressed by
i 1 2 N 1 N, 2
niei - dx'eg = n,dx" + nydx® + n‘pdga =__dx + dx* + Nwrdgo =0 (4.62)
"all 1,822
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The derivative of fluid quantity on S, stream surface with respect to x! or x? with the other kept

constant is

d ] aa®_ o , 29 3 ™ a3 _ @ Ny, o
22 T L 2 L e o (4630)
ax! ax! ax” ox ax!  9p ax! ax! My dp  ax! N _ryall 9¢
P
3 3 @ ax3 _ @ a @ @ D2 3 d N, a
Q0 =-° 4 x99 %= 2= T — (4.63b)
ax? ot aldax? axd daxd axr My ax? N o
7
When equations (4.63) are used the continuity equation for steady relative flow becomes
_a_l rpW! \/322 sin 012) + iz (1'pW2 1’311 sin 012) =0 (4.64)
dx ax

where r is the circumferential distance between two adjacent S, surfaces and the dynamic equations

become

W2

Vazz

I SIS (4.65a)

T ! ! ax!

awy Wl] .2 aVer) _ a
ax! ax?
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w,_a(V 1 (3 9 '
v ( ol') W [ W2 Wl] al ds £, (4.65b)

D(Vo_r) _ w! a(vof) + w? B(Vor) =f =F.r (4.65¢)
Dt ot axl \/a—zz_ axz v v

Alternatively, these equations can be obtained by projecting the three components of equation (96) of

1

reference 2 in e, e, &3 directions. F in these equations is the same F of reference 2, f, being its

covariant components

I"=—_.192_n-——__1_...1__8_I_’n=fiei=Fiui (4.66)
n,p dp Npr p dp
From equations (4.26),
ow ow
FFC O 'S ax?
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Substituting equation (4.67) into equation (4.65) gives

w i{(w‘ cos 0,5 + Wz) J;;;] - iz[(wl + W2cos 012) Jz:l_l]

ax’ F)
agy \OX X (4.68a)
w, a8V
JWedve) a pa
I 9x! ax! ax!
]
i[(wz + W2 cos 012) \/811] — i[(Wl cos 8,5 + W2) \/322
ax’ ! .
1 (4.68b)
_ e _w«,a(v,,r)+ A _ &
wl r o 9x? o ax3 ’
D(V 1 3(v 2 (v
( 0') _ W ( 0') + v ( "’) =f,=F,r (4.68c)
Dt ag; axl ay, ax?

Equation (4.68b) is the most important equation for S, flow just as equation (4.33) for S, surface

flow.

Corresponding to the different choice of the x!- and x%-coordinates, equations (4.64) and (4.68)

reduce to the following special equations:

(1) x!-line coincides with the projection of the streamline on the meridional plane.

W2 = 0 and equations (4.64) and (4.68) simplify to, respectively
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i

i

.ag‘ rpW! ‘/an sin 012) =0 (4.69)
and
Wp (Vyr) A g __y (4.70a)
r at [} ¢
a(w, Vau) _ a(WIV%z cos 912) 4 yau | W¢ 9(Vyr) Lo g (4.70b)
a? at W, o 9x? ox? ad
(4.70c)

D(Ve) _ We Ve _ . _ o
= = ¢— ¢l’

Dt J;If at

Equations (4.69) and (4.70b) of S, surface are quite similar to equations (4.29a) and (4.33a),

respectively, of S, surface.
(2) xl-line coincides with the projection of the streamline on the meridional plane and x2-line is in

the radial direction normal to the z-axis. Equations (4.69), (4.70a), and (4.70c) remain

unchanged, but (4.70b) becomes
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B(W, \’311) _ B(W‘ \/azz sin a) N ay | W, A(Vgr) N A _ & (4.71)
ar a W, r o ar o

(3) x!-line coincides with the projection of the streamline on the meridional plane and xZ-line is
normal to xl-ljne. Equations (4.64), (4.70a) and (4.70c) remain unchanged, but (4.64) simplifies

to

6<W, Vau) _ Yau | W, 9(Ver) n ol T O _ (4.72)
— — —— —— —— 2
ax? Wy ro gt ax? ax’

It is noticed that equation (4.70b) contains an f, term which is, in general, not equal to zero inside the
blade passage.

By the use of equations (4.63), the energy equation (4.35) becomes

2=+ L T =0 (4.73)

For the special case where x!-line is coincident with the projection of the streamline on the meridional

plane it simplfies to

2 =0 (4.74)
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4.7 Methods of Solution For S, Flow
Since the equations governing the flow along S, stream filament are quite similar to those along S,
stream filament (the main difference being the difference in the partial derivatives involved), the methods
of solution are also quite similar. In the first group of methods of solution, W! or ¥ isintegrated along
successive x>-coordinate lines, whereas in the second group of methods of solution ¥-values at all grid
points on the mid-S, surface are solved at the same time.
In the first group, if the xL-lines are corrected during calculation to coincide with the projection of

the streamlines on the meridional plane, the continuity equation (4.64) gives

(r ‘/a“ sin ﬂlz)i

Wy = (sW; (4.75)

T \/azz Sin 012

S, filament flow is calculated by considering the effect of entropy increase in the density equation

V1
H- LV T eow
t=2° 2 e B
L] H.
X i
fi ' (4.76)
( 7+1 88
e i B, |75, ®
2 0 0 14,2
% lHi-EV’

The values of p and W can be determined from their product by rewriting equation (4.75) in the form

of equation (4.38) with
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r F ax? ax?

A(Wyyay)? W, a(Ver) a1 3 |
—3 =2a,, | - —2 + 2 T2 -4 (4.17)

The table in reference 3 can be used to find I (or p) from the known value of & (or pWy). W, is then
computed from pW‘ after p is obtained.

The right side of equation (4.70b) is more complicated than equation (4.41) of S, flow, In the
inverse 6r design problem, the variation of Vgr is specified by the designer, whereas in the direct or
analysis problem it is obtainable from the given shape of the S, surface (see next section for further
discussion). The variation of I is obtained from its inlet value and equation (4.73). The variation of s
is estimated from its inlet value and the empirical equation. W, ‘/;;1_ is then integrated along the x2-
lines from a streamline along th;a inner boundary or in the middle of the flow region in the same manner
as that in the S, surface flow calculation. In the case where the x%-line is chosen normal to the x!-line

it is convenient to rewrite equation (4.72) as

3
m = Kd’(xz)h oW, sin 0,5 ay, dx’ (4.78)

and integrate (W, \’311)2 along the x2-lines. After variation of WQ along x? is obtained, the mass

flow along x? is computed.

with

K=21rr—Nt____gE[1_Nt]zzﬁ[l_t]___gr_r[P—t] (4.79)
¢ 3 z P Pl Tt P



where { is a correction factor as indicated by figure 19 of reference 7. If the range of integration
includes the wall boundary-layer regions, m calculated should be slightly greater than the actual mass
flow because the calculated velocity in the wall boundary-layer region is greater than the actual value (see
fig. 2.5). In the design problem we may either specify the mean streamline and obtain the coordinates of
the inner and outer boundaries from given mass flow, or specify one boundary arnd obtain the other
boundary. In the analysis problem, the mass flow calculation is used to correct the values of W' and p
on the streamlines (see ref. 6).

If it is preferred to use fixed x!l.lines, then the variation of le along the x? -lines should be

corrected according to continuity equation (4.64). Compute pW by

1

3 (4.80)
W = {[(le)2 + (pWhH? - 2(pW1)(pW2) cos 012] + (pW«,)z}2
integrate w! \/au along x2-line by
(wl ,/ i ,/ { W, a(v,r)
E3 a"z (4.81)

4 5% [(Wl cos 0,5 + w2) J;;;] - % [WZ Hcos 012]

compute mass flow along x2-line by
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2 .
m =K, j’(‘x,)h 7pW! sin 0,, fa,, dx’ (4.82)

and correct W! values at the fixed grid points in the same manner as in the previous case.
Analogous to the $,-surface problem, the continuity equation and dynamic equation may be solved

simultaneously through the use of stream function. From equation (4.64) a stream function can be

defined with

_?.I_’_ = - rsz aj; sin 0,
axl
s (4.83)
2 = prl 322 Sin 012
ax? )

Substituting equation (4.83) into the dynamic equation (4.65b) gives the following principal equation for

flow along S, stream filament.

cos B
1 W 12 o 1 PR J EI:I+ K ﬂ:M (4.84)
ax?

3y a(xl)2 1/311822 dx 8x2 a2 a(x2)2 ay Ve

where
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P Oln( \/511/322 r sin 012) N cos 0,5 3lnr N 1 a4,

‘/an ax! 8q9 ax? sin 0,4 ya,, ax?
K= — aln(\/azz/an 7 sin 012) cos 013 3ln 7 n 1 90y,
\/anaxz ayq ax! sin 8, ya;; ax!
,
M=| 1 3mp_ °°solzalnp &
1
a; Ox agy yau ax
' 8, in
COo8 T s1n
4 1 alnzp _ 1zaln2p 1 _a«lz 4 12 ¢
ay; O yau ox ayy 9 V211822

Equation (4.84) may be cénsidered as a generalization of the principal equation (107a) of reference 3
where orthogonal curvilinear coordinates r, ¢, z are used. When x! and x® become z and T,
respectively, equation (4.85) reduces to equation (107a) of reference 3.

When the ¥-derivatives are evaluated by suitable numerical differentiation formulas of equal or
unequal spacing (ref. 27), the resulting set of a large number of algebraic equations containing the

unknown ¥-values at the grid points are obtained. Also the dynamic equation may be written as

e waL = [[ v xW, (211857 sin 8;,dx'dx?

W A(V,r
= ([ Yu Va‘ Vo) _ a1 _as f,| dxldx?
ax? ax2 Ix?

(4.85)

and integration along 1, 2, ...,8, 1 around the grid point E results in an algebraic equation containing

the U-values at the grid points A,B,...,I, (fig. 4.7). The resulting set of algebraic equations containing
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unknown ¥-values at the grid points in the order of several hundred for one stream filament, can be

solved by either the direct matrix method or relaxation method as employed in references 3 to 8, 11

and 12.

4.8 Computation of F Term in Inverse Problem

It is pointed out in Chapter 3 that in the inverse or design problem the following condition of

integrability should be used in the solution in the fluid flow along the S, stream filament.

F-VxF=0

(4.86)

When general curvilinear coordinates are employed, substituting equations (4.12), (4.17) and (4.63) into

equation (4.86) gives

Then

or

2 [fz _ 2 [f]
ax! \fp)  ax?
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F F F
LN PR (11) R Lty P (4.89)
X ° 2
aanr VazzF«,r A 9x Fr

The procedure of calculating f; is similar to f. of references 2, 12 and 16. Compute f; from
equation (4.68a), e ‘from (4.68c), the derivative of f;/f o with respect to x?, then integrate f, along
x! from (x'),, where f, is known. It is convenient to choose (x}), at a station where Fr is equal to

zero because F; can then be computed from F;.

4.9 Computation of Components of Normal and W o In Direct Problem
In the direct or analysis problem, the known S, surface offers two relations between the n- or F-

components. Since n is normal to W,

N, wi N
1W7+2

w2

n-W= nlwl + nzwz + n,w, = + Nww«, =0 (4.90)

or

N'W! sin 0,, + N*W? gin 8, + N,W, =0 (4.91)

then
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N N '

[
Ny N,

This equation is similar to the equation appearing in section 3.3. The ratio of the N-components may be

obtained by the following consideration: Along the intersection of the S, surface and a constant x2

surface

ax!

N -1

= r[a_w] yall = - r[%] (‘/au sin 012) (4.93)
x*=(x!),

Along the intersection of the S, surface and a constant x! surface

ax? ax

_N_2 = - r[_a_p] Jaz_z = - r[_a_pE] (@ sin 012)_1 (4.94)
x!=(x"),

Knowing these N-ratios W p can be computed from equation (4.92) and V, computed from W o F 0

is then calculated by equation (4.68¢c) and F, by

F,=_°F (4.95)
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CHAPTER 5

TWO- AND THREE-DIMENSIONAL SUBSONIC FLOW IN TURBOMACHINES

5.1 Series Expansion on S; Surface of Revolution

The intersection of an S, surface with a mid-channel S, surface is a streamline lying in the mid-
passage on the S, surface (fig. 5.1) and is referred to as the “mean streamline” in references 54 and 4 to
6. In order to get an idea about fluid flow along the Sym filament with reference to the flow in the
three-dimensional channel, the fluid flow along the mean streamline was examined in that reference based
on the solution of compressible (subsonic) flow in a typical two-dimensional turbine cascade obtained by

an electro-mechanical hand computer in the late forties.

Figure 5.2 shows that as the inlet Mach number increases, the increase in the velocity along the mean
streamline is larger toward the suction surface. The dip in velocity variation along the suction surface is
also seen along the mean streamline. In figure 5.3 the shape of the mean streamline is compared to those

of the mid-channel line and the mean chamber line.
Figure 5.4 compares the variation of the specific mass flow along the mean streamline to the one-
dimensional variation, the passage width. Inside the blade passage the former is a few percent greater

than the latter, however the difference at the leading edge is large (25 percent). The effect of the blade

thickness extends 40 percent upstream and downstream of the blade is also apparent.
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The variation of tangentail velocity and its rate along the mean streamline are shown in figure 5.5. The
two begin to vary at 60 percent chord length upstream of the blade and end at 60 percent chord length

*
downstream of the blade.
" " ‘ . - . » - -
Based on the preceding observation a very simple, quick approximate solution of the inverse or direct
problem for fluid flow along an arbitrary S, stream filament or revolution was proposed in references 5

and 6. Any flow variable on the mean streamline is considered a function of the meridional coordinate

q = q4p(9) (5.1)

Its total variation with respect to ¢ is

de Gt a¢ dt &t r 3¢

From the continuity and dynamic equation the following equations for the first derivatives, with respect

to the angular coordinate ¢ of the velocity components, are

W dw d(rrpW
tL_ |, ¢ N tan ( P 0) n
dp de TP de

(Wy + 2wr) sin a‘mszﬂ (5.3)

*
A variation of tangential velocity, similar to that shown in Fig. 5.5 but simpler, was used in the

calculation of fluid flow on S2 m surface in Refs. 10 and 11.
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;1 d(rrpWot (5.4)
—_ |0

oW, dw,, Ky

—_ = ||r + (W, + 2wr)sin o|tan § —
d¢ dé ¢ TP ol

FW oW FwW oW
.__!zrii.__'t—tanﬂ__l—ksma ¢ (5.5)
a¢,2 dt d¢ BT d¢ .
FwW d(rrpW aw
o2 8 dtmeW) 1 d ) ), e, g O
6¢2 rp2 dyp d¢ rp di dp dy
(5.6)
A% oW
+ tan ﬂ[r _— _¢ + sin o __¢J cos?
9¢ d¢

The variation of a velocity component W ¢ of other flow variables in the circumferential direction

is given by the Taylor series

_ 2
a(¢) = qp + (¢ — ¢m) [‘_’_‘1] + M [ﬁ] ¥ (5.7)

The mass flow between the mean streamline and suction and pressure surfaces are, respectively,
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M, =rr J:“‘ pW,dp (5.8)

and

Mp = rr I:" pWydp (5.9)

m

The mass flow between the streamline selected in the mid-passage of a radial-flow impeller and the
stiction surface, is 65 percent of total mass flow (ref. 6). The streamline distribution and the variation of
the meridional velocity along the mean streamline are shown in figures 5.7 and 5.8, respectively. It is
interesting to see that the final value of W, obtained in the series (three terms) calculation is quite
different from the constant value assumed in the design and compares well with the value obtained in the

accurate direct matrix solution (ref. 8).

This method has been improved and further developed in references 55 to 57. Recently a computer
code employing fourth order Taylor series has been developed (ref. 58). In the case of a transonic turbine
cascade the result obtained by using the fourth order series is generally better than the result obtained by
using the second order series (fig. 5.9). It is also seen from the figure that the result agrees with the
experimental data better than that obtained by the time-marching method reported in reference 35,
especially in the low supersonic region. Yet the code can be put on a T1-59 pocket calculator.

(Computing time on this calculator is 3 min per station).
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5.2 Series Expanison In p-Coordinate

The circumferential extension of flow properties on a mean streamline by series expansion along the
S, surface of revolution, described in the previous section, can readily extend to a circumferential
extension of flow properties on a mean S, stream surface by series expansion in the three-dimensional
blade channel. Because S, flow surface of revolution is not assumed here, the three-dimensional series
expansion method yi_elds a full-three-dimensional flow field, whereas the use of series expansion on a

number of S; stream surfaces of revolution yields a quasi-three-dimensional flow field.

Partial Derivatives of Flow Quantities in Nonorthogonal Curvilinear Coordinates: Flow properties at a

point in the three-dimensional flow channel are calculated by Taylor series expansion similar to

equation (5.7). The first order partial derivative of W' and p, with respect to p can be obtained from
|

the three-dimensional vorticity components, equation (4.17), for isentropic irrotational flow, is as follows

(refs. 59, 61):

1 1 7 5

1
\/"'22 cos 0, agg r i?_ _?XV_ 9(Vr)
ax2 ap ax2
J
vau yan cos Oy r __ﬁl LA 3(V,yr) - (5.10)
ox dp
1
1 dp i dp U ox
— Aot T a2 T P
\, a“ ax 322 ax r ] L aP | \_ C
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where

C=| 2 (oW farg sin 0y5) + 2 [eo W2 fory sin 0,y) ] L _
ax! ax? Tpya
and
2 2
9 _ _ P _ o_9 {{(pwl) + (sz) - 2(p W) (p W) cos 012] + (pro)z}
dp (v—Dhlop 3dp

The higher order derivatives can also be obtained from the basic equations.

5.3 Forming Successive S, Surfaces by Progressing Circumferentially from S,

Similar to that in the two-dimensional series expansion method, the space coordinate ¢ of the S,

surfaces can be obtained by the following series (ref. 59)

1 &

where ¢ is the circumferential coordinate of any S, surface and ¥, is the value of stream function of

that S, surface.
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In reference to figure 5.10 the integrating factor B of S, surface in section 4.5 is related to its

inlet value by

(5.12)

’Slp
s|s

Flw

The inlet plane Z; is taken sufficiently far upstream of the blade row where the flow is uniform.
The difference of stream function ¥ between two adjacent S, surfaces is the mass flow passing through

the shaded area in figure 5.10, i.e.,

AY, = [pW(r(z: - ri)A go]i (5.13)

With the use of equations (5.12) and (5.13) the p coordinate of S; surface can be determined step-by-
step as shown in figure 5.11. The velocity component W' and p at the Sl, S2,... are then calculated

by Taylor series expansion.

The method described in the preceding paragraphs was programmed in Fortran IV and employed to
investigate three-dimensional flow in a compressor stator and a turbine rotor. Less than 3 min were
needed on a M150 computer (0.4 MIP). The turbine rotor is designed for a pressure ratio of 1.4, inlet

absolute Mach number of 0.4, and rotor hub tip ratio of 0.66.
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Figure 5.12 shows the projection of the streamlines on S2,m surface on the meridional plane. The
blade shape and the velocity distribution around the blade is shown in figure 5.13. The intersections of

the S, and S, surfaces, with the through-flow cross-sections, are shown in figure 5.14.

The twist of the S, surface in the radial direction (fig. 5.14) is seen, generally, radially outward
toward the suction surface. As this turbine rotor is designed for radially nonuniform work output, the
radial twist of S, surface is relatively large, but it is still under 3 percent. The differences in the normal
distance between the adjacent S; stream surface, both in the flow direction and in the circumferential
direction of the twisted S, surfaces, and the untwisted S, surfaces of revolution will explain the

difference in flow fields between the two cases.
5.4 Coordinate Transformation and Direct Expansion Method

For a more accurate determination of the coordinates of the S, surfaces and flow properties on

these surfaces, ‘the following coordinate transformation is made:

€ = x}(r,2)
n= XZ(r’z) (5.16)

¥y = 'l’z(ra‘Psz)

The surfaces of revolution formed by revolving the x!- and x?-coordinate lines around the z-axis and the
S, surfaces are the new coordinate surfaces (fig. 5.15). From the continuity and dynamic equations, the

following first order partial derivatives are obtained (refs. 60 and 61):
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cr- W aB  W! 9B
(all ax agy ax

and

p _ P of _ 9 {[(‘pwl)2 + (;:Wz)2 - 2(PW1)(PW2)COS 912] + (”wso)z}

Y, (v —1)h{d¢¥, 9y, (5.18)
In addition second order partial derivatives are also obtained. Then
_ B 1 2| 0B 1 *s
Y =¥m+ ('/'2 - '/’2m) m T - ('/’2 - ¢2m) — *= (¢2 - ¢2m)3 -4 B (5.19)
2 Y, " 6 2

2)m
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Y, — o, P 5.20
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Wi = Wigan) T V20 — Yam)

This approximate method of solving three-dimensional flow has been programmed in Fortran IV. The

complete solution was computed on a UNIVAC-1100 computer in less than 1 min.

The method was used to calculate the three-dimensional flow field in the Chinese Academy of
Sciences’s (CAS) reseach compressor (ref. 62). The mass flow is 61 kg/s, the rotor tip M is 1.4, the
stage total-pressure ratio is 1.5, the hub-tip ratio at stator inlet is 0.49, and the number of stator blades

is 37. Projections of S and its streamline projection on the meridional plane are shown in figure 5.16.

2,m
The blade shape and distribution of velocity on the k =7 coordinate surface obtained by this method
and the stream surface extension method are compared in figure 5.17. The difference between the two is
small. A comparison of Mach number distribution with that obtained by the S,/S, iterative solution
(see section 5.9) are shown in figure 5.18. Except near the leading edge, the result obtained from the
present method is close to that of the three-dimensional solution. The relative twist of S; surfaces at

the suction surface (J-4) is shown in figure 5.19. Rm is the value of R on the S surface of the same

2,m
S, surface. (R is the local value to the point j =4,k = 1,...11.) It is seen that the largest AR/R
occurs a short distance from the hub wall and the maximum difference between the present solution and

the full-three-dimensional solution also occurs there. It may be noticed that the maximum relative twist

is rather small, being less than 1 percent.
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5.5 Direct Matrix Solution of Subsonic Flow Along S; Filament of Revolution

The method of employing general nonorthogonal curvilinear coordinates and corresponding
nonorthogonal velocity components to express the basic equations governing the fluid flow along S, and
S, stream filaments were developed during the sixties (refs. 28 and 29). Since 1969, computer codes
using general curvilinear coordinates have become available for flow along the S, (ref. 40) and S,

(ref. 64) stream filaments.

When nonorthogonal curvilinear coordinates (xl, x2) are selected on the flow surface of revolution
(fig. 4.1) the principal equation (4.48) is to be solved. The metric tensor a 8 involved in the equation
is calculated from the given geometry of the blading in cylindrical coordinate system (¢, p) by the

following equations:

/ \2 { Wz
au - —a_'I + rz a—wl
(9x’) (ax!,
( \2 { 2
822 = _a_‘. + r2 E_W_
(9x?) (9x?)

(5.21)

Discretization with the use of second order central numerical differentiation formula leads to a nine-point
star in the two coordinates (fig. 4.7). The resulting N algebraic equations for the N interior grid

points is written as
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M]{¥} = {P} - (5.22)

The coefficient matrix [M] is a tridiagonal matrix. In order to take advantage of the zero elements in
[M], one row of fictitious grid points was added upstream and downstream of the blade and the only
coefficient along the fliagonals was numbered and stored (ref. 63), thus reducing the storage requirement
for the coefficient matrices. For a problem of m = 47, n =11, (517 grid points), only 28 000 coefficients
are stored. Therefore, 32 K internal storage is sufficient.

As in references 10, 11, and 63, the coefficient matrix is factored to a lower triangular matrix [L]

and an upper triangular matrix [u] which has elements along the diagonal equal to unity. Thus,

equation (5.22) becomes

[L] [u] {¥} = {P} (5.23)

{¥} is then obtained by a simple forward and backward substituting process as follows:

Calculate {Q} from [L] {Q} = {P} (5.24)

Caluclate {¥} from [u] {¥} = {Q} (5.25)
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The preceding direct factorization technique was available in the forties. It was first utilized to solve
the S2,m flow in a gas turbine (ref. 10) Only 385 interior points were involved in that problem, and the
method was tested on an IBM CPCE and a UNIVAC. Nine digits were used on the former and 11 digits
were used on the latter. The results agree up to the fifth digit. The residual left at any grid point is less

than one in the eighth digit.

As in references 10, 11, and 63 density is obtained by storing the ¥ - & table (eqs. 4.39 to 4.41) in
the computer. During the iteration process for ¥ and the density terms on the right side of the
principal equation (4.47), the relaxation factor for density equal to unity is good for quick convergence,
wheréa.s, the relaxation factor for ¥ should be reduced from 1 to 0.5 when the inlet Mach number
increases from low subsonic to high subsonic. Depending on the inlet Mach number, usually 10 to 20

iterations are required to reach the following convergence criterion (ref. 63):

_”il_f”_y < 107°
14

g (5.26)

v+l _ v
[l ST
'pv

This computer code has been widely used by a number of people on a number of different computers.
On a Sun 4/110 (32-bit, 7-MIPS) computer, 20 iterations for an S; problem of 500 grid points were

computed in less than 30 sec.

This code has been modified slightly by adding a nearly orthogonal C-mesh sub-system around the
leading edge of the blade (ref. 65) (fig. 5.20). The ¥-values at the boundary of this sub-grid-system are

taken from the result of the solution formerly obtained with the H-shape grid system. This additional
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calculation improves the flow field around the leading edge (fig. 5.20j. Not only the peak velocity
(fig. 5.21), but also the stagnation point at the leading edge are correctly determined as indicated in
figure (5.22). For the blade shown in figure 5.22, the positions of the stagnation point corresponding to a

number of inlet angles are shown in figure 5.23.

Alternately an H-C mesh, such as that shown in figure 5.24, may be used in the computation of S;
flow to obtain flow computation around the leading edge accurately. The H-C grid is obtained by a
numerical solution of Poisson’s equation incorporating finer grids in areas of the physical plane where

large flow gradient exists.

The computer code of reference 43 has been slightly modified to obtain the flow field through a
turbomachine blade row having splitter vanes or tandem blades (ref. 66). Division of mass flow by the
splitter vane (fig. 5.25) and the outlet flow angle are determined by applying Kutta-Joukosky condition
to the trailing edges of the main blade and the splitter vane. Figures 5.25 and 5.26 show some of the
results obtained in an investigation of the effects of replacing one half of the main blade by splitter vane.
Figure 5.26 reveals that by substituting seven splitter vanes, which have half of the chord length and the
same shape as the main blade (except around the leading edge), the peak velocity at the leading edge of
the main blade is reduced to about the same value in a cascade of half the solidity. The Mach number at
the second peak is also reduced. On the other hand, the outlet angle is reduced only 1.2° compared to

2.3° in cascade of half the solidity.
Iterative SOR and Direct Matrix Solution of Subsonic Flow Along S, Filament

The computer code for the solving of the principal equation (4.84) for fluid flow along an S, stream
filament, employing nonorthogonal curvilinear coordinates and corresponding nonorthogonal velocity
components, was first programmed by the use of iterative relaxation method (ref. 64). In order to get an

accurate solution, at least six stations are placed inside the blade passage (from leading edge to trailing
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edge of the bladé). Becaﬁse of the large number of grid points involved in multistage machines (fig. 2.4)
a large internal storage capability is required. However, such storage was not available at that time, the
line over-relaxation iterative method was used. Usually 20 to- 30 iterations are required to reach the same
convergence criterion set for S, calculation. (In this way, 1200 grid points can be used on a 32K
internal storage.) Recently the same principal of equation has been programmed using the direct matrix

method of solution.

Similar to the S; flow passing through the blade row having splitter vanes, this code has also been
slightly modified for calculating S, flow for fan blades, downstream of which the flow is divided into the

core compressor and the outer annulus.

Examples of solutions obtained by this computer code will be given in the next section for three-

dimensional flow calculation and also in chapters 6 and 7 for transonic flow.

The S, computer code is programmed for the inverse problem, i.e., the variation of Vgr along the
S, surface is specified by the designer and the condition of integrability is incorporated in the code (see
section 3.3). Equations (4.92) to (4.94) are also incorporated in the program so that it may be used to

calculate Vgr from w o Thus the same code can also be used for direct problem.
5.6 Three-Dimensional Subsonic Flow in Turbomachine
Three-Dimensional Flow and Quasi-Three-Dimensional Flow in Turbomachines
In general the solution for three-dimensional flow in turbomachines involves the use of a number of

S, and S, stream filaments. Flow through a three-dimensional flow passage formed by two adjacent

blades can be considered to consist of a large number of thin S, stream filaments (fig. 5.27) and the flow
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in each filament can be taken to be the same as that on the S, stream surface at mid-height of the
filament (fig. 5.28). Similarly, the flow through the passage can be considered to be consist of a large
number of S, stream filaments (see fig. 5.29) and the flow in each filament can be taken to be the same
as that on the S, stream surface in the mid-circumferential position of the filament. The two families
are related in the following manner: The stream surface of one family is formed by joining the
corresponding streamlines lying on the stream surfaces of the other family. Hence iteration between the
solutions of the flow through the two families of stream filaments is necessary to obtain the three-
dimensional flow. Theoretically the solution becomes exact when the number of filaments becomes very

large. However, for engineering accuracy, 8 to 10 filaments in each family is sufficient.

For axial-flow turbomachines the twist of the S, stream surface is usually not large. In the so-
called “quasi—three-dimensional;’ solution all of the S,-stream surfaces are assumed to be surfaces of
revolution. In that case the radius coordinate and the normal thickness of the filament do not vary in the
circumferential direction. Any variation in flow direction can be determined by the use of only one S,
surface. In the following, the S, surface lying in the mid-channel, the Sz’m surface, will be used
(fig. 5.30). This choice is, of course, arbitrary. But, it is preferred, since (1) the shape of that surface
bears some resemblance to the mean surface, (2) the flow on that surface is an approximate average flow
in the channel, (3) the calculation of the flow on that surface is the first step of practical three-
dimensional blade design process, and (4) calculation of flow on more S, surfaces will be involved in the
full-three-dimensional solution. The geometry of the S, stream surface determined by an axially
symmetrical solution or by an averaging process of the flow in the circumferential direction would give a

quasi-three-dimensional flow solution different from the one described herein.
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Three-Dimensional Blade Design Procedure

It is suggested that the following steps may be followed in a three-dimensional blade design process:

(1) Determine flow path in the meridional plane. Simplified radial equilibrium calculation is made
at a number of stations between rows (ref. 1). If desired, this flow path can be modified in the
S2,m calculation in the third step.

(2) Estimate radial variations of stator stagnation pressure loss and rotor isentropic efficiency and
compute the corresponding entropy increases across the blade row (see section 2.5). Assume linear

variation of entropy in the flow direction except at the passage shock. It is desirable to check the

loss with boundary layer calculation in later cycles.

(3) Assume the variations of 7/7; and (Vgr)/(Vgr); along the mid-channel S, filament (see section
5.1). Solve the S, principal equation for ¥, (section 4.6). Compute density and velocity
components. Compute coordinates p(xl,xz) or (¢,p) and examine the shape of S, for its

smoothness.

(4) Obtain the geometry of the S, stream filaments of revolution, [r(z),(z)] from the meridional
projection of streamlines on Sz,m' Design the blade section by the mean-streamline/series
expansion method (section 5.1) or select standard blade section on the conical surface that
approximates the S; surface in the blade passage. Solve the S, principal equation for ¥
(section 4.4). Compute velocity components and density. If the p or W distribution around
the blade has to be improved, repeat the design or blade selection process in step 4. An inverse
calculation is available to modify the blade shape for a better W or p distribution around the

blade (ref. 67). The new values of V,yr and r obtained are inputs to the next S, calculation.
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(5) Repeat step 3 with the (Vgr) and r values obtained in step 4. Modify the passage geometry in
the meridional plane if desirable. Modify the stacking line in the range permitted by stress

consideration if desirable.

(6) Steps 4 and 5 are repeated until acceptable convergence and desirable velocity and pressure
distributions around the blade surface and along the hub and casing walls are obtained (see

fig. 5.31).

The S, surface near the hub or casing wall is usually assumed to be surface of revolution. If the
angle between the S, surface there and the hub or casing wall in the meridional plane is denoted by ¢

(fig. 5.6), and if the S, surface there is a surface of revolution, then

Z%=o0 (5.27)
By using the following relation between o and the velocity components

tan 0 = T (5.28)

Wz

and the following equation of vorticity component,

W xv), = 137 _ 13Ve) (5.29)

r dp r Oz

there is obtained (ref. 68)
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Equation (5.30) shows how (V gr) and the vorticity affects the twist of the S, surface. In particular if

S, surface is a surface of revolution, d¢/dp = 0 and equation (5.30) becomes

(V,r)

=r(V x V), ‘ (5.31)
dn
If the &vorticity component is equal to zero, then
AVer) _ (5.32)
dn

Thus, in the third step of the design process described in the preceding section, satisfaction of
equation (5.32) in the values of (V,r) specified near the hub and casing wall would help keep the S,

stream surface near the wall being surface of revolution.

" Determination of the Circumferentially U'sziform Conditions Far Upstream and Far Downstream of the
Blade

In the solution of S; flow the uniform condition (in the circumferential direction) at stations far
upstream and far downstream of the blade row is required. This is true not only for all of the blade rows
" in a multistage machine (fig. 2.4), but also for the rotor and stator in a single stage machine (fig. 5.32).

The far field boundary condition upstream of blade row S in figure 5.31 is obtained as follows:

(1) Calculate S, flow with all of the blade rows in the flow passage.
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(2) Take off blade row R and make another S, , flow calculation from station AA to station BB.
In this calculation the ¥ distribution obtained at station AA in step 1 is used as the boundary
value at that station. At the far upstream station BB, a boundary condition of the second type

(i.e., Vr = 0) is considered.

(3) With the ¥ distribution at BB and a second type boundary condition (i.e., Vr = 0) specified at

far downstream station CC, an S2,m calculation from station BB to station CC is made.

(4) The fluid state obtained at station BB in step 2, and the streamline shape and the fluid state
between station BB and CC obtained in step 3 provides the geometry of the S, surface and the

boundary conditions at the two stations for the calculation of flow along a number of S; stream

filaments.

The far downstream condition for blade row R is obtained in a similar manner as indicated in the

figure.

5.7 Three-Dimensional Flow in a High Subsonic Compressor Stator

Designed by Quasi-Three-Dimensional Flow Method

The quasi-three-dimensional blade design method described in the preceding paragraphs has been
used to design a high subsonic stator of a single stage transonic fan. The projection of the stator blade
on the meridional plane is shown in figure 5.33. The inlet Mach number at the hub is 0.8. After
completion of the blade design a three-dimensional analysis was immediately carried out. The quasi-
three-dimensional design took five cycles of iteration, whereas the full-three-dimensional analysis took

only three more cycles of iteration.
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It was customary in the past that entropy gradient was considered in the S, calculation (fig. 2.5),
whereas iséﬁtropic assumption was considered in subsonic 8, calculation. Iteration between the two
immediately shows divergence of the solution (fig. 5.34). When the same value of entropy was used at
the same point on the two surfaces, convergence was quickly reached after only two more cycles of

calculation. The criterion used for both convergence consistency is

M_n) — M.n
s{™) s

Ms(ln) l

< (5.33)

¢ was reduced to less than 2 percent. Figure 5.35 shows the streamlines obtained at the root in S; and

Sz’m calculation in the last cycle.
In the followup, full-three-dimensional analysis calculation the S, surface is no longer considered as

surface of revolution. The nonorthogonal curvilinear coordinates are still placed on the surface. The

principal equation is the same as equation (4.84) except for the last term in M. Instead of

(2wrp sin o sin® 0,,) it is now (2w3rp sin® 8,,). Actually the computer code needs only one S; code and

the general S; code. By putting w® = w sin o, the same code becomes the S, surface of revolution

code.

Due to the twist in the general S, stream surface, it is not possible to impose the periodic condition
immediately downstream of the trailing edge of the blade. Instead the boundary condition of the first
kind is used there, that is, ¥ is specified there. After a certain distance downstream the periodic

condition is again imposed.
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The difference between the two solutions is indicated by the twist of the S, surface, that is the
deviation of S, surface from surface of revolution. Figure 5.36 shows the amount of deviation of the §;
surface number 3 and number 5 of figure 5.37 at a number of stations along the flow direction. It is
apparent that the deviation of surface number 3, located nearly at mid-span, is larger than that of
number 5. The deviation measured by the difference in radius, Ar, is less than 1 percent of the radius r.
Figure 5.37 also shows twist of S, stream surfaces near the leading edge and the trailing edge of the

stator.

The difference in the streamline distribution, the variation of Vor along the intersecting streamline
of S, and S, surfaces and the variation of the angular thickness of SZ’m filament as determined in the
S, calculation, are shown in figures 5.38 to 5.40, respectively, and are small. Yet these relatively small
differences in radius or ﬁ]amen't thickness causes a relatively large difference on the Mach number
distribution over the blade surface (fig. 5.41). This phenomena can be explained by examining the
difference in the variation of 7 in the two cases. Figure 5.37 shows that r near the suction surface at
the blade leading edge is smaller in the full-three-dimensional flow than in the quasi-three-dimensional
flow. Thus, the peak Mach number on the suction surface obtained in the full-three-dimensional analysis
solution is higher than that obtained in the quasi-three-dimensional design calculation. It exceeds the

sonic velocity slightly.

5.8 Three-Dimensional Flow in CAS Research Compressor (Subsonic Case)

CAS Research Compressor
The research compressor designed for experimental investigation of three-dimensional subsonic and
transonic flow in an axial-flow compressor is a single-stage compressor with inlet guide vanes. It is

designed for a stagnation pressure ratio of 1.5 and isentropic efficiency of 0.85. The tip speed is 400 m/s,
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the inlet hub-tip ratio is 0.4. The corrected mass flow per unit frontal area is 188 kg/m?s and the

average inlet Mach number is 0.616.

Figure 5.42 shows the flow path with the intersecting lines between the meridional plane and 8,
surfaces. The hub and casing contours are so chosen as to reduce, as much as possible, the sever flow
conditions at the tip of the rotor and at the hub of the rotor and stator. The relative Mach number of
air entering the rotor varies from 0.68 at the hub to 1.34 at the tip. The MCA blade shape (laid out on
conical surfaces) was used for the tip elements. The DCA blade shape was used for the elements in the
mid-span and hub regions. Blade solidity varies from 2.3 at the hub to 1.3 at the tip, and the diffusion
factor at the tip is limited to less than 0.4. The absolute Mach number of air entering the stator varies
from 0.80 at the hub to 0.58 at the casing. Solidity of the stator blade varies from 2.0 at the hub to 1.1
at the casing and the diffusion factor is limited to 0.5 at the hub. The turning angle at the hub is
slightly less than 45 degrees for the rotor and slightly less than 45 degrees for the stator. Aerodynamic

design details are given in reference 62.

Overall Performance

Rotor test data were taken over a range of mass flows from maximum flow to near stall condition at
60, 70, 80, 90, and 100 percent of equivalent design speed. For each mass flow, measurements were taken
at seven radial positions. Measured outlet stagnation pressures, stagnation temperatures, stream static

pressure and flow angles were corrected for Mach number effect.

Overall stagnation pressure and stagnation temperature ratios were obtained from a mass average of

the survey data at the rotor outlet and the pressure and temperature measured at the inlet station.
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Strain-gauge type and Setra capacitance type transducers were used in measuring pressures. Copper
resistance temperature detectors were used in measuring temperature at the inlet station and nickel
chromel silicon-nickel thermocouplers were used in measuring temperature at the outlet station. Flow

through the rotor was determined by the calibrated bell-mouth inlet.

Rotor speed was measured by a magnetic pick-up in conjunction with a gear mounted on the drive
' motor shaft. A phase difference type torque-meter was used to measure the torque of the drive shaft. A
3000 kW D.C. motor and gear boxes were used to obtain speeds up to 12 000 rpm for the research

compressor.

The estimated accuracy of these conventional measurements is as follows:

Inlet pressure, mm H,;0 +10

Outlet pressure, mm H,0 +25

Temperature, K +1
Mass flow, % +0.5
Speed, % +0.03
Flow angle, deg. +1.5

Torque, (0-400 kg/m), % +1

For overall performance L2F measurements were only made at the inlet and outlet station. At the
inlet station, data were taken only at one circumferential position, whereas at the outlet station, data

were taken at 16 circumferential positions.
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The accuracy of the L2F measurements is estimated to be

Flow speed, % +1

Flow angle, deg. +1

The overall 'pert_'ormance of the rotor is plotted in figure 5.43. The plotted data present rotor
stagnation pressure ratio and isentropic efficiency as a function of equivalent mass flow for rotative

speeds of 60, 70, 80, 90, and 100 percent of design speed.

Detailed L2F Measurements

Detailed L2F measurements were first made for the peak efficiency point of 70 percent of design
speed. The equivalent mass fléw was 144.8 kg/ m?s, the stagnation pressure ratio was 1.21, and the
isentropic efficiency was 93.2 percent. Flow speed and flow angle were recorded at 8 axial stations, 6 to
14 radial positions, and 10 to 16 circumferential positions. All of the measured points are on the Sy,

and S, stream surfaces obtained in the design calculation.

Three-Dimensional Flow Calculation

Before the result of the three-dimensional flow field calculation can be properly compared with the
L2F measurements, suitable flow parameters measured at the outlet station should be used in the
calculation. The probe measured outlet stagnation pressure p,° and laser measured outlet flow angle
a,, shown in figure 5.44 as functions of radius are chosen. The main input to the three-dimensional
analysis calculation is then: flow path (in meridional plan), blade geometry (coordinates given on design
conical surface or on manufacturing templates), inlet pressure and temperature, rotor speed, mass flow,

flow coefficients, and outlet stagnation pressure and outlet absolute flow angle.

116



The first step in the three-dimensional calculation is computation of flow along an S2,m filament
about mid-way between two adjacent blades (fig. 5.31). The radial distribution of rotor efficiency
determined by temperature measurement, is shown in figure 5.45. The measured value of torque is
considered to be more accurate than the measured value of a small increase in temperature across the
rotor. The temperature determined radial distribution of rotor efficiency, used in the initial calculation,
has to be corrected so that the radial distribution of stagnation pressure in the calculation at the outlet
station should be at least approximately equal to that obtained by the pitot tube measurement. The
span-wise averaged value of the corrected efficiencies has to agree with the rotor efficiency determined by
torque measurement. The resulting distribution of rotor efficiency also determines the radial distribution
of Vgr at the outlet, which is compared to the values used in the design (fig. 5.45), i.e., 100-percent
design speed. The comparison shows that at the peak efficiency point of 70-percent design speed, the load
distribution along blade span is quite different from that at the design point. The load near the tip and
the efficiency distribution shows that the efficiency at the hub is lower than that at the design point. It

seems that is caused by the appearance of a higher angle of attack in the hub region.

In the initial calculation the variation of Vr along the flow direction is taken to be the same as
that used in reference 11. The variaiton of the stream filament thickness is estimated according to the
blade thickness distribution. (In a later calcualtion, however, both estimates are not need, because their

variations are given by 8, solutions.)
With these input values, solution of Sz’n1 flow is obtained. The axial velocity at the outlet station

and the experimental flow angle a, yield a new set of values for Vgr at the outlet station. The S2,m

calculation is repeated with this set of values until convergence of the solution is obtained.
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The converged value of outlet Vr is then used with the experimental value of outlet stagnation
pressure to correct the radial variation of rotor efficiency. The modified values are used to repeat the

preceding calculation of Sy, until the rotor efficiency value converges.

From this solution of Sz,m the geometry of 11 surfaces of revolution are formed and interpolated
values of coordinates of the corresponding blade surfaces and the variation of the S; stream filaments

are obtained.

After these solutions of the flow on 11 S, surfaces are obtained, a new S2,m surface, together with
the corresponding variations of Vgr and stream filament thickness, is obtained. The flow on this new

Sz,m surface is computed in the same manner as previously discussed.
The whole calculation process is very similar to the quasi-three-dimensional calculation described in
section 5.7, except that input values to the whole calculation are different. The solution of the complete

procedure converges rapidly (see fig. 5.46) and only four computation cycles are actually required in the

present case.

This quasi-three-dimensional computation could be conveniently followed by a full three-dimensional
computation as suggested in the preceding section. It was found in the present case that the difference
between the two solutions is rather small. The twist of the S, stream surface obtained is very small.
Comparisons were made only between the experimental measurement and the quasi-three-dimensional

solution.
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The following sketch shows the various steps invloved in the present calculation:

Input Data

Flow path (in meridional plane)

Blade geometry {(on conical surfaces)

Inlet condition, mass flow, rotor speed
Experimental outlet stagnation pressure p ; °

Experimental outlet flow angle a5,
1
Radial distribution of rotor efficiency
1
Radlal distribution of Outlet V ¢ \

|

Axial variation of V gr
Variation of 7
1

Solution of flow on S, ,, surface

Experimental ay

Experimental p, °

Rotor efficiency

Interpolation of blade coordinates on 11 $, surfaces
I
Solutions of flow on 11 S surfaces

Convergence criterion
of S; and S

Comparison and Discussion

From the calculation procedure presented in the preceding section it is seen that the result of the
theoretical calculation depends on the #ccuracy of the experimental data put into the calculation.
Because the measured p,° and @, are believed to be relatively more accurate than the others, they are .

chosen as the input for the calculation, with only a small adjustment in the values (see fig. 5.44).
On the other hand, errors in temperature increase across a single rotor could be quite large,
therefore, a relatively large adjustment in local rotor efficiency was made for the overall rotor efficiency

determined by the torque-meter to be satisfied (see fig. 5.45).
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Figure 5.47 shows the radial variation of the relative flow angle at the inlet and outlet station
obtained in the theoretical calculation for 70-percent design speed. It is seen that their variations are

quite similar to those of the design values.

The corresponding radial variations of relative Mach number at the inlet and outlet station are
shown in figure 5.48. Although the inlet Mach number is only slightly greater than 0.8 at the tip, the

calculation shows that supersonic velocity occurs near the leading edge of the blade in the tip region.

The absolute velocities of air flowing past the rotor blade channel obtained in the L2F measurement
and in the theoretical calculation on the 8, p, surface are compared in figure 5.49. In general, the two
agree closely in the trend of variation and agree reasonably well in magnitude. Toward the exit, the
calculated value is lower than t;,he L2F measured value. Perhaps this is caused by the inadequacy in the
magnitude of the mass flow coefficient used in the theoretical calculation to account for the effect of an

annulus boundary layer.

The variation of relative flow angle obtained by the L2F measurement along a streamline near the
blade suction surface, along the mean streamline and along a streamline near the blade pressure surface,
all on an S, surface at 40-percent blade height, are compared to the calculated value in figure 5.50. In
general, the agreement is pretty good. Similar to that noticed in the design calculation, the air has an
overturning in the blade channel at the outer radius even at 70-percent design speed. Figure 5.51 shows

constant Mach contours on three S, surfaces.
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CHAPTER 6

TRANSONIC FLOW ALONG S, AND S, STREAM FILAMENTS

Intensive research work on the development of a relatively simple and quick method of computing
the transonic flow along S, and S, relative stream surfaces has been carried out during the last 5 years
at the Institute of Engineering Thermophysics, CAS. Once the quick methods for solving transonic S,
and S, flow have been completed, they can be readily utilized to obtain a quick solution of a three-

dimensional transonic flow.

Because the computer time required to solve a steady flow problem by using a time-dependent
approach is quite long, a solution for the steady flow problem using much shorter computer time has been
sought through a number of approaches. The mean streamline/series expansion method, as seen in
sections 5.1 to 5.4, is quite simple and is applicable to a low transonic flow without strong passage shock.
When strong passage shock in the the blade passage is considered, it immediately appears that using
existing methods of calculating the supersonic flow and subsonic flow, separately, on the two sides of the
passage shock should work. For instance the method of characteristics can be used for the supersonic

region while the direct matrix solution can be used for the subsonic region.

6.1 Transonic Flow Along S; Stream Filament of Revolution Solved by Separate

Region Computation with Shock Fitting

Calculation of Supersonic Inlet Region
In figure 6.1 a typical compressor cascade with a supersonic inlet flow is shown with the bow-
wave/passage-shock. The bow wave region upstream of bow wave can be easily calculated by the method

of characteristics. References 37 and 38 give detailed descriptions of this method of solving supersonic
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flow along an arbitrary stream filament of revolution. The nonuniform increase of entropy downstream of
the detached bow wave is included in this computation. The calculation is carried out from one blade to
the next in the circumferential direction for several blades until the periodicity condition is satisfied.
_Among others, the theoretical inlet flow angle B,, which corresponds to the inlet Mach number M;, is
determined. It was noticed in the calculations that the periodicity of velocity can be satisfied easier than
that of entropy (ref. 37). (Usually the former occurs at the fourth blade channel while the latter occurs

at the seventh blade.)

Location and Shape of Detached Bow Wave

In the past, the location and shape of the bow wave were usually taken from empirical data of an
isolated plane or axially symmetrical body (refs. 70 to 72). Based on experimental data given in
reference 73, modification of such data for plane cascade has been done in reference 74. For three-
dimensional applications the location and shape of the bow wave on the S, surface of revolution is

required and their determination by theoretical calculation has been presented in reference 75.

In calculating the transonic flow field for a cascade test, the location and shape of the bow wave may
be taken from the middle line of the bow shock band obtained through optical measurement. For the
design of a transonic cascade, they may be taken from empirical data (refs. 70, 71, 73, and 74) or may be

taken from the shock capturing solution described in section 6.2.
Computation of Subsonic or Transonic Region Downstream of Passage Shock
Depending on the inlet Mach number, the flow downstream of the passage shock may either be

subsonic or transonic. The subsonic S; code (ref. 63) is modified to take passage shock as the inlet

boundary and to take the stream function variation immediately downstream from the passage shock as
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the Dirichlet boundary value at the inlet station. The nonorthogonal curvilinear coordinate system is

especially suited for use in the downstream region (see fig. 6.2).

The streamline distribution and constant Mach number contours calculated for DCA 2-8-10 cascade

(ref. 73) at an inlet Mach number of 1.11 and a static pressure ratio of 1.35 are shown in figure 6.3.

In figure 6.4 the variations of three important flow variables Vgr, B, and M, along the three
streamlines are shown. Notice that the change in the flow direction, or angle B, is large at the curved

part of the passage shock, whereas the jumps in M and Vgt are large near the suction surface.

Similar data obtained on a number of S, surfaces gives the shape of the mean (and other) S,
stream surface, the thickness v'ariation of the corresponding S, stream filaments, and the variation of
Vor over the S; surface. The accuracy of the calculated flow along the S, surface depends on the

accuracy of this data.

Improvement of Location and Shape of Passage Shock

According to the calculation for supersonic flow upstream of the passage shock and the assumed
location and shape of the passage shock, the Mach number, just upstream of the shock, the angle included
by the shock, and incoming flow are completely determined. Then the turning angle across the shock, the
Mach number just downstream of the shock, the pressure increase across the shock, the density ratio and
the entropy ch@ge, etc. are calculated by the Rankine-Hugoniot relations. If the assumed location and
shape of the passage shock are correct, these calculated values of aerothermodynamic quantities just
downstream of the shock and those at the inlet boundary obtained from the solution of the subsonic flow
field, must be the same. Based on this criterion, the correct location and shape of the shock can be

obtained. This adjustment process is incorporated in the computer code of reference 38. Figure 6.5
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shows the agreement in W and B in the case of a DCA 2-8-10 cascade calculation. On the UNIVAC
1100, computation time for a supersonic region with 90-by-20 mesh points is less than 2 min, and for
subsonic region with 13-by-40 mesh points, computation time for each iteration is less than 1 min. To
obtain the convergent result, the total computation time is about 10 min. In reference 76, this method
was applied to compute the transonic flow along three S, stream filaments in the DFVLR rotor and

compare the flow with experimental data.

In case the flow downstream of the passage shock is transonic, one of the shock capturing code

described in section 6.2, may be used.

6.2 Transonic Stream-Function Principal Equation Solved With the

Use of Artificial Compressibility

In the treatment of a transonic flow calculation, the use of the stream function principal equation is
preferred to the use of the potential function principal equation. Many good methods are available for
quick, accurate solution of the elliptic principal equation corresponding to the direct problem of subsonic
flow along an S; surface. For transonic flow, however, the stream function approach has inherent
difficulty since gas density is not uniquely determined from the maﬁs flux obtained from the derivatives of
stream functionr ¥ after each cycle of iteration of the ¥ field. This is why long computer time was
spent to obtain the steady solution through artificial unsteady calculations. Now, with the method of
introducing artificial density through the density term (refs. 76 to 78, and 40), the stream function
principal equation is elliptic throughout the whole flow field, and quick methods are available for solving
the elliptic equation. Several attempts (refs. 41, 42, and 79) to assess this approach are described briefly

in the following section.
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Principal Equation
The following conservative form of the stream function principal equation is obtained by substituting

equation (4.46) into the dynamic equation (4.33):

(6.1)

where

A= \/;/(J;;sin 0121')

Ay = cos 0,/ (sin 0121')

Ag = Ja;/(‘/a:sin a,lr)
A, = E[.ﬂ - TE;] - ZM@Q sin w sin 4,,
ax

(6.1a)

w! | ax?

It may be noticed that in the stream function solution it is easy to include entropy variation in the

flow field. The density calculation includes entropy increase as follows:
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. _
I+ %o?? — B(WP . R (6.2)

The principal equation (6.1) also includes a variation of entropy with respect to x2. Entropy increase

across a shock is calculated by the usual formula.
Method of Solution
The principal equation (6.1) is a mixed-type equation. It can be solved by modifying the density so

numerical dissipation necessary is introduced in the supersonic region. For the present treatment, in

which general nonorthogonal curvilinear coordinates are used, modified density is selected as follows:

~ wi w? 2 6.3
P=1p — pplAs>p—p -prlel +przAx (6.3)

where

p = Max

0, C[l - _1_]] (6.4)
M2

and
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C=05-3

Determination of Density

In transonic flow, the density is not uniquely determined by the value of mass flux, througﬂ the L-®
method usually used in subsonic flow cannot be used. Density is now determined in the following
manner: B& thé use of equation (4.46) and artificial density, the dynamic equation (4.33) can be written

as (see eq. 4.;11)

ov

x2

— Az
ax!

+ A, (6.5)

d ( [ 1) d
ax? ax! [

ﬂpih
ax! ax2

ot -
ol -
o) -

Q

This velocity gradient equation is now used to obtain W? along the x? coordinate line by
integrating from an initial x! coordinate line. W' and W? at grid points on this line are first
calculated using equation (4.46), in which the density p is replaced by the artificial density 5. Then
W! on other x! coordinate lines are obtained by integrating from the initial line either in one direction
(ref. 41), successively in reversed direction (ref. 42), or in positive and negative directions (ref. 79).

Knowing W1, W? is calculated by

wywh = — (o ow/0x1) / (fary 0/ax) (6.6a)

W is calculated by
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W= [(W‘)z + (W)’ + 2wiw? cos al,]i (6.6b)

and p is calculated by equation (4.2).

Discretized algebraic equations obtained by the principal equation (6.1) by conservative central
difference formula over a whole flow field can then be solved by a suitable method for the solution of an
elliptic equation. In the direct matrix method of solution the coefficient matrix [M] of the discretized
equation (6.1) is now a function of 5. To prevent decomposition of the coefficient matrix [M] in every

cycle of iteration, equation (5.0) is transformed into (ref. 41).

M1 [A )+ = 5 [R]® (6.7)

so that the decomposition of [M'] is needed only the first time, and subsequent solutions can be obtained

with relatively few forward and backward substitutions.

In addition to this direct matrix solution, strong implicit approximate factorization procedures

(refs. 80 and 81) and vertical line relaxation procedures were also programmed in reference 41.

It was found when calculating for a transonic ca.scmiei with a mesh of 61-by-11, the strong implicit
algorithm and the relaxation algorithm took about 2 sec per iteration on an UNIVAC-1100 computer
whereas the direct matrix algorithm took about 3 sec on the same computer. But convergence obtained
after 40 iterations (120 sec) in the latter is better than the convergence obtained after 100 iterations

(200 sec) in the former. The Mach number obtained by the direct matrix algorithm for a turbine cascade
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and a compressor cascade are compared with other theoretical calculations and experimental data in
figures 6.6 and 6.7 respectively. Fifty to sixiy and 11 to 15 grid points were used, respectively, along x!
and x? coordinate lines, and 200 to 300 iterations were carried out to reach an cL¥) level of 1073, It is
interesting to see that in the case of the turbine cascade, the result obtained by the present method
agrees quite well with experimental value. It seems that both this method and the mean
streamline/series expgnsion method gives a Mach number distribution in the supersonic region better
than that given by the time-marching method. In the case of the T-1 compressor cascade, it is seen that
the present method captured the second shock better than the relaxation method and time-marching

method, and that the position of the captured first shock is a little ahead of that given by the experiment

data.

Improvement of Velocity Distribution for Transonic Blading

~ On the basis of this treatment of the transonic direct problem, a method of solution for the transonic
inverse problem was developed and reported in reference 67. This method is very useful in improving the
aerodynamic performance of cascade blades. For instance, the velocity distribution on the suction of
T1(18A614b)08 cucﬂe shows two high velocity peaks (fig. 6.8). This method enables one to modify the
velocity distribution so that the magnitude of the two velocity peaks is reduced, but the blade circulation
is kept the same (see fig. 6.8). Blade coordinates obtained in the inverse solution are shown in figure 6.9.
It is seen that the change in the blade shape is very small. Maximum blade thickness and outlet flow

angle are practically the same.
6.3 Effect of Axial-Velocity Density Ratio and Viscous Effect

In comparing theoretical calculations presented in the preceding sections with experimental data, it

is important to notice that the cascade experimental data is usually obtained at a certain axial-velocity
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density ratio. In the case of compressor cascade it exceeds unity. Therefore, the theoretical calculation
should consider a variation of the stream filament 7 corresponding to the axial velocity density ratio in

the experiment.

It is also important to consider the viscous effect. If flow does not separate from the blade, the
viscous effect is reflected by the reduction in flow area due to boundary layer development on the blade

surface and the increase of entropy in the fluid.

At a relatively low supersonic inlet Mach number, inclusion of the effect of entropy increase in the
theoretical calculation (shock capturing method) seems to give a pressure distribution in agreement with
the experimental data (ref. 73) (fig. 6.10). The variations of Vgr, M, and 8 along three streamlines

are shown in figure 6.11.

In the case of an inlet Mach number of 1.11, the inclusion of both entropy increase and axial-velocity
density ratio (1 = 1.16) in the theoretical calculation yields a fair comparison between the calculated and
experimental pressure distribution (ref. 73) around the blade surface (fig. 6.12). The variations of Vr,

M, and B along three streamlines are also shown in figure 6.13.
At an even higher inlet Mach number of 1.34, probably due to boundary layer separation, an {}
value of 1.18, which is much higher than the experimental data of 1.04, is required to bring the pressure

distribution close to the experimental level (fig. 6.14). The corresponding variation along three

streamlines is shown in figure 6.15.
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Calculations (ref. 85) have also been made to obtain the flow along three S, surfaces at 68-, 89-,
100-percent blade height of the DFVLR rotor. Here an adequate knowledge of the relatively large

variation of 7 is very important for results to be close to the experimental data.

6.4 Transonic Flow Along General S; Stream Filament

In a general S, stream filament the radial coordinate of the central S, surface and thickness of the
filament vary in the flow direction and circumferential direction (see fig. 6.16). In transonic flow, there
are abrupt changes in r and 7 in the shock region. The method for solving transonic flow along an S,
stream filament of revolution given in reference 41, has been extended in reference 86 to that along an

arbitrarily twisted S, stream filament.

In a full-three-dimensional calculation, the shape of a general S, stream surface is obtained by
joining corresponding stream lines on a number of S, stream surfaces. In reference 87, general x! and
3

x? coordinates are placed on the central 8, surface of an S, stream filament. The third coordinate x

is chosen in the radial direction (fig. 6.17). Then

)

cl=ﬁ.r+_af_z+rﬂ¢
ax! ax! ax!

52=_a_rr+ﬁz+rﬂ¢> (6.8)
x> ax? x>

=,

3 3‘1’1
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where

— =T 6.9
" (6.9)

The stream function principal equation in conservative form is

N A P a2

QD
>
'Y
© -
@

x2

zf_] -2 [A2 ] _ A, (6.10

x1

© |-
Q

x2

o | -
QL
ol
Q

where

A, = cos 8,,/(sin 8,57)

A; = Ja._z;[‘/;:sin 021%]

wl

A, = \/‘:[_61 - _a_s_] - 26)(z,tp)/D(xl,x2 )w cos(n,r)

ax? ax?
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These equations are only slightly different from those on an 8, surface of revolution. (Compare
eq. (6.10) with eq. (6.1)). The procedure of solution for the transonic flow along a general S, stream

filament is the same as that along an S stream filament of revolution (ref. 41).
6.5 Transonic Flow on S, Stream Filament Solved by Separate Region Computation with Shock Fitting

Similar to transonic S; surface flow, transonic S, surface flow can also be solved by a separate
region calculation. However, the shock on an S, surface is different from that on an S, surface. The
shock usually begins at the outer casing and terminates a distance from the inner hub. Thus, the flow
field is divided into three regions (ref. 39) (fig. 6.18). The first region AA;B;BA, is a supersonic flow
region. It extends from the starting line AA,;, which may or may not coincide with the blade leading
edge, to shock line BB,. Supel;sonic flow in this region is solved by the method of characteristics. The

slopes of the two families of characteristics are

dx!

X = [E*_z] - —(K N )/2J (6.11)

where i = 1,2 (when i = 1(2) the sign is + (-)).
The consistency relation along the i family of characteristics is

Cy, W e, B4 Cy =0 (6.12)

dx Py
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The second region A;A,B,B A, is a transonic flow region. The flow in this region is best

calculated by a Taylor series, using the following partial derivatives with respect to x2:

1 2
B, W 4B O =F (6.13)
x> ax? '
1 2vvar2
E,, FW. g OV _y, (6.14)
a(x2)2 1 a(x2)2 1
where 1= 1,2.
O __p O L 20 ¢ (6.15)
ax? (v — Dh |ax? ax?

(6.16)

2
Fp |0l __» Fr o, 20| o|_ 296G
a(x)?  rlax? (v = 1h |5(x?)? al| ax?) ax?

The coefficients Clp Czi, Cs,s Eli, E2i’ Fli’ in and G are given in reference 39.

The third region BB;A,A;C,CB isa subsonic flow region, the flow of which is solved by the SOR
method.

This method has been used in reference 39 to obtain the transonic S, flow in the CAS rotor and the
rotor reported in reference 86. The computation was done on a UNIVAC 1100; CPU time was about

3 min. For the high pressure (1.94) rotor of reference 86 meridional projection of the characteristic
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network on S, and the mesh used for the subsonic region are shown in figure 6.19. Figure 6.20 shows
meridional projection of the streamlines. The abrupt change of the streamline across the shock is clearly

seen. The Mach number variation in the three flow regions is seen in figure 6.21.

The vari#tion of flow along the mid-channel S, surface can be seen more clearly by following the
flow along three streamlines, namely, the one along the hub, the one at midspan and the one along the
casing. Corresponding to the abrupt change across the shock (fig. 6.20) the decrease in S; stream
filament thickness is large (fig. 6.22) whereas the change in the relative flow angle (fig. 6.23) is small.
Across the shock, the drop in relative Mach number (fig. 6.24) and absolute Mach number (fig. 6.26) and
the increase in absolute flow angle (fig. 6.25), tangential velocity, (fig. 6.27) and pressure ratio (fig. 6.28)
is relatively large. It is noticed from these figures that there is quite a large overturning of the air and

overshooting of the tangential vélocity below mid-span and near the trailing edge of the blade.
6.6 Shock Embedding Elliptic Solution for Inverse Problem of Transonic S, Flow

One of the findings in reference 3 has been generally accepted since it was published. That finding
states that in the case of an inverse problem where the tangential velocity component is prescribed by the
designer, the partial differential equation governing fluid flow remains elliptic as long as the meridional
velocity component is lower than the speed of sound, even when the flow relative to the rotating blade is
higher than the speed of sound. Indeed a great number of transonic turbomachines have been designed on
that basis. However, if in the design of transonic machines, the design parameter selected, for instance
Vor, is prescribed in the same manner as in the subsonic machines (fig. 5.5), flow discontinuity at the
passage shock is not obtainea in the solution. This kind of calculation is referred to as Level I
calculation. If the values of Vgr, s, and r prescribed in the design calculation are smooth, but have

steep gradients at the passage shock, then the solution obtained indicates a passage shock. This is
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referred to as Level II calculation. Level III calculation has the following characteristics: (a) prescribed
values have proper discontinuity across the shock provided by transonic 8, calculations, (b) shock
relations are embedded in the S, calculation, (c) S, solution obtained shows a clear shock discontinuity,

and (d) one of the x2-coordinate lines coincides with the shock line (fig. 6.29).

Embedding Shock Relations

In the calculations of the direct problem of stream surfaces, usually the plane shock relations are
used. This is equivalent to assuming that the shock surface is perpendicular to the stream surface. The
error involved appears to be somewhat different for S; and S, flows and its magnitude depends on
particular configuration. In reference 88, this assumption is not made and fully three-dimensional
relations are used across the shock. First, two stations, a very short distance apart, are placed along the
shock line one immediately upstream and the other immediately downstream. The dynamic equation in

the direction tangent to the S, surface and also to the shock surface is

w (+) =W (-) (6.17)

The dynamic equation in the direction normal to the shock surface yields

1 [__—7 2_1 + M(‘“)’] M) 4

2 (e M) - o M MO - 2]
T ’ (6.18)

M - [M(+)2 v+ ] =0
-1

The dynamic equation in the direction tangent to the shock, but not tangent to the S, surface yields
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(+) _ g-) _ N2 oy
S RS = ”’lln 2 _+ 2 i+ llln 2”11\4,’—" 1(6.19)
v (7+1)M£") 7+ 7= 7+ 7+t
The energy equation is simply
I(+) — I(—) (6’20)
The continuity is simply
g ) =g ) (6.21)

and the condition of continuity of the stream surface S, is given by the p coordinate of S,

p(t) = () (6.22)

The computer program of reference 64 was modified by working equations derived from the
preceding basic equations. The modified program was used to carry out the three levels of calculation for
the DFVLR rotor (ref. 89), for which Laser Two Focus measured internal flow data is available
(ref. 90). In addition, the experimental Mach number contour plots at several spanwise positions given in
reference 34 for the peak efﬁt;iency operating condition at design speed, the meridional projection of the

Mach number contours on the Sy, surface are constructed and shown in figure 6.32(a). The increase of
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Vgr and s from inlet to outlet, determined from the measured values given in references 34, is used in

the calculation.

Figures 6.30 and 6.31 show input yalues of 7, Vgr,and s used in the Level II and III calculations.
From the results obtained in the three levels of calculations, it is immediately seen from figures 6.32 and
6.33 that the streamlines and Mach number contours obtained in the Level I calculation are quite
different from Level II and 1II calculations as well as from the measured result. Mach number contours

obtained in the Level III calculation agrees best with the measured data.

It is also seen that the difference between the results obtained in Level II and III calculations are not
large. The differences in the S, surface shape and S; filament thickness, needed for S, calculations,

are shown in figures 6.33 and 6.34, respectively.
The relative flow angle obtained in the calculation is compared to that of the mean camber line and the
measured value (ref. 90) in figure 6.35. The agreement with measured value is quite good. The
calculated pressure rise is shown in figure 6.36.
6.7 Direct-Problem Solution of Transonic Flow Along S, Stream Filament

In the case of a direct problem of transonic flow along the S, stream filament, it is desirable to put

the nonorthogonal curvilinear coordinates, x! and x? on the mid-S, surface of the filaments, and the

x3-coordinate perpendicular to the surface (refs. 91 and 92) (fig. 6.37). Then W3 =0 Ifdx®=1, then

‘,g33 =1, =r B cos (n,p) and
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4 A
axt)  lax! (9x!
{ \2 { }2 { 3\
=] (2] +(22] | (6:29)
\asz L 9x”) \axz,

812 & \/811 B2 cos Oy

g = m/0); g1 8p sin’ O)y

/

The continuity equation, the dynamic equation and stream function velocity, and the principal equations

are, respectively (ref. 91).

a . d .
— (prn \’822 sin 012W1) + — (prn \/811 sin onwz) =0 (6.24)
dx dx

—a_';! [(Wl + W2 cos 012)JE1—1 ] - _ai [(W2 + W! cos 012) @]
ax dx

(6.25)
. Y811 | al Js
=2 \/311 \/522 w3 sin 0+ —|—-T —
w! |ax? ax?
where w3 = w cos(n,z)/r,,
TP {81 Sin 012W2 = — —; TpP {8gq sin 012W1 = (6.26)
ax! ax?
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F ! qu_] =c, (6.27)
p

where

C, = Jg:/( J;; sind, rn)
Cy = ./g_;/( N rn)

C, = cos 8y, /(sind;, 1)

w! {ax? Ix?

C4:2J;;Jg:;w3sin912+E[£— _a_s]

This principal equation is similar to that on the S, stream surface, but it contains only two unknowns,

¥ and p. The traditional ¥-p iteration is used in the solution.

The method of artificial compressibility is used in a manner quite similar to that in transonic S,
flow (section 6.2). In the calculation for the 8:1 presssure ratio centrifugal compressor (fig. 6.38) of
reference 93, it was found that the viscous effect is large and that only after appropriate entropy
correction and use of a blockage coefficient of 0.18, about the same value used in reference 93, the
calculated Mach number at the casing was brought up to a level close to the experimental value (fig.
6.39). Results of computation for a mass flow of 0.909 kg/s at tip Mach number of 1.25 are given in
figures 6.40 and 6.41. The increase in Vyr along the casing is shown in figure 6.40. The increase in V,

across the shock is a small portion of the total increase. Figure 6.41 shows the meridional projection of
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Mach number contours on S, ,. It is seen that flow in an inducer of a centrifugal compressor is quite

similar to that in a rotor of a transonic axial-flow compressor.
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CHAPTER 7
THREE-DIMENSIONAL FLOW IN TRANSONIC TURBOMACHINES

The determination of three-dimensional flow in transonic turbomachines through the use of S; and
S, stream filaments proceeds in the same manner as in the case of subsonic turbomachines. Various
techniques described in Chapter 6 for solution of transonic S; and S, flow are selected for use in the
three-dimensional solution. Because the blading has a stronger influence than the hub and casing walls
on the passage shock, the position and shape of the shock are determined in the S, calculation.
Together with the geometry of the S, stream filament and the discontinuous changes of filament
thickness r, angular momentum Vgr, and entropy s, the position and shape of the shock are carried
over to the S, calculation in the next cycle. This procedure not only was proven to be practical in the
S,/8, iteration process, but also provides a possibility to modify the geometry of the blade and
meridional pﬁssage for minimizing the loss caused by passage shock. So the three-dimensional blade

design procedure suggested in this Chapter is even more desirable in the case of transonic turbomachines.
7.1 Quasi-Three-Dimensional Flow Field in the DFVLR Rotor

Quasi-three-dimensional solution refers Kto the solution obtained by using a number of S; stream
filaments of revolution and a mid-channel S, filament. In reference 95, this approximate method was
applied to compute the flow field in the DFVLR rotor (ref. 89) operating at the design point, of which
measured flow field (ref. 90) is available for comparison. The design stagnation pressure ratio is 1.51 and
the inlet relative Mach number at the blade tip is about 1.37. The Vgr distribution at the outlet at
design point is determined from experimental data and is used as the fixed boundary value of the direct

problem.
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1

For S

solution a grid system of 61 stations along x~ and 11 stations along x? ig selected on

2,m
the meridional plane. Seven S, surfaces located at 0, 10, 30, 50, 70, 90, and 100 percent, respectively, of

the blade height at the inlet station are used in the calculation. The grid system selected on the S,

1 2

surface has 61 stations along x° coordinate and 15 stations along x“ coordinate. The methods of
references 42 and 64 are used for S; and S, calculations, respectively. In order to see how high of a
convergence level can be obtained for this moderately high transonic flow, nine cycles of calculation were
carried out and the convergence level obtained (relative change of flow variable less than 1 percent) is as
good as that previously obtained for subsonic flow. The significant advantage of the transonic three-
dimensional calculation method is that the computation can be carried out at low cost in a reasonable
time period on a modern microcomputer, which is readily available to all design engineers. For instance,
the computing time for the transonic S, and S, solution is about 30 sec each on a 7-MIP Sun 4
machine. Thus, the total time fequired is less than 1 hr. This time decreases in proportion to the
number of CPU’s in a multiprocessor. If, say, eight S; flows can be done at the same time on an 8-CPU
computer, the total time required will be reduced by a factor of eight. Therefore, this relatively
inexpensive, approximate three-dimensional code is quite suitable for design investigation and trade-off

studies. The final choice of design configuration may then be checked and refined by a full-three-

dimensional analysis code or even by a viscous code, which has recently been made available.

Convergence of Iterative Three-Dimensional Solution

The key issue for the success of the present method of solving the three-dimensional transonic flow
by iterative calculation between an Sz’m surface calculation and a number of S, surface calculations is
the convergence problem. In the case of a high subsonic flow through a compressor stator (ref. 31) it was
found that when the entropy values of the two surfaces at the same intersecting point are kept the same,

a convergent solution with
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Ts,(n) - Tsz(n—l)

r - T _1 |
"a(n) aln—1) <0.3 percent

< 0.8 percent
| g (n—1) l Tap(n—1)

and

M"z - M’l
—M.T_

< 2 percent

was obtained after only four cycles of iteration. For transonic flow it is expected that the convergence of
solution would be more difficult to obtain than that of the passage shock. However, it is believed that, in
the present calculation proceduré, that the shock discontinuity is determined in the S, solution and that
the abrupt changes in entropy r and Vgr across the shock obtained in the S, solution are taken as
the input values to the S, solution will help achieve convergence of the three-dimensional iterative

solution.

In the example cited above, the criterion |Ar/r| .. and |Ar/7|,,, are used to judge convergence,
whereas | ('ME,1 - MS2)/Mlemx is used to judge consistency. Between convergence and consistency, the
former is more essential. If convergence is not achieved, good consistency is impossible. On the other
hand, even in the case of a high degree of convergence, there may be an irreducible inconsistency of the
Mach number. It is believed that consistency of entropy and mass flow coefficient in the S, and S,

calculations is especially important for consistency between the S, and S, solutions.

Using a proper value of relaxation factor is very important for convergence. During the calculation

for flow in transonic rotor, the thickness value of the S, stream filament near the casing, fluctuated and
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diverged when a relaxation factor was not used (see fig. 7.1). This kind of divergence is something like

that in the iterative calculation of the following algebraic equation.

x® = ¢ (x@-1)

when f’(x) <—1. Hence, in order to obtain and speed up convergence, a small relaxation factor was

used.

In the numerical example to be presented in the following section, the same grid pattern in the x!
direction is employed for both S, and S, calculations, and the entropy and mass flow coefficients are
kept consistent in both calculations. It is found that using the relaxation factor of a relatively small
value is very effective in obtaining quick convergence. The consistency is, at the same time, relatively
good. In the case of high subsonic flow through a compressor rotor, the relative change in S, filament
thickness is reduced to below 2 percent and the relative differences between S, and S, Mach numbers
and flow angles are reduced to 0.9 percent and 0.3 degrees, respectively. In the case of transonic flow in a
compressor rotor with a tip Mach number of 1.37, the relative change in S, filament thickness is
reduced to below 1 percent and the relative difference between S; and S, Mach numbers at the same
grid point is below 4 percent. These values of consistency are probably due to the fact that artificial
density is employed in S; but not in S, calculations and that the conservation form of the principal

equation is employed in S, but not in S, calculations.
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Variation of Flow Variables During the Convergence Process

During the first few cycles of calculation there was a general tendency toward convergence.
However, in the region near the casing, the values of S, filament thickness soon began to fluctuate.
Also its magnitude tends to increase (see fig. 7.2). A small relaxation factor, less than 1, was used to
make the process convergent. It was noticed in the 7th cycle that a small 7, input to S, calculation
(the lower solid line ir.1 fig. 7.2) yields a large value of output from the S, calculation (the upper dashed
line in fig. 7.2) and vice versa in the 8th cycle. The solution lies between the two. The middle value was

then taken as input to the 9th cycle and the output obtained is less than 1 percent from the final value.

The difference in streamlines obtained on the Sz’m surface in the 1st cycle and 9th cycle shown in
figure 7.3 is seen to lie in the region downstream of the shock. The radius coordinate obtained in the 9th

cycle in that region is considerably higher than that in the 1st cycle.
The stream-wise variation of 7 for the seven S, surfaces assumed in the 1st cycle and obtained in

the 9th cycle is shown in figure 7.4, and the value of r and 1, respectively, of the streamline at 70— and

100-percent blade height in the 7th to 9th cycles of calculation is listed, respectively, in tables I and IL

146



€289T° ¥Z89T° ST89T” 9Z891° ¥Z891’ 22891° 6189T° 9189T" 1891 €189T" 94> 136
8T89T" 6289T" 0e89r1” 62891° 8289T° 97891" £T89T° 0zsoT’ L189T° L1891 24> P38
|1891" 6189T° 0Z891" 0Z891" B81891" 81891 SI89T” T1891° 01891’ 01891’ L eIER (Y)
Jaqunu
C A 6¢ 8e LE 9¢ 1 e €€ [AS 1€ aonywg
qT89T" 81891° 1z891° ZZ891" 8189T" ot89r1’ 1089T1° 86.L91° 10891" 8089T" 9T89T" 324> 116
81891" 12891° g2891° oTIT” £789T° £2891° £0891° 66.L91° 20891" 60891" 91891" opLo 43g
1189T° yigotr’ L1891 g1891" y1891° L0891 66.9T" 96.91" 0089T” L0891° SI89T” AL L
1squnu
ot 62 87 L2 9z 114 ¥ €2 144 £ ! oonws
FTOAD LSVTIHL NI
IHOIFH 3avid LNAOHAJ-0L LV NOILNTOATY O ADVIUNS WVAULS 's @HL J0 (=) sNIaVy 4O SENTVA FHL— A'TdV.L

1£9°0 1¥9°0 L¥9°0 8590 899°0 1890 ¥69°0 €0L°0 01L°0 LIL°0 124> 136

£€9°0 £¥9'0 1990 2990 £L90 189°0 T0L°0 60L°0 91L0 £TL0 924> 18

629°0 8€9°0 90 $99°0 £99°0 9.9°0 8890 969°0 ¥0L'0 EA VA Ao Q3

qunu

qTL 6e 8t Le 9€ 1% ¥e €€ (44 1€ uonng

8TL0 6€L°0 - 18L°0 €9L°0 TLLO 6LL0 ¥LLO 69.°0 19L°0 LSL°0 $S.°0 3242 36

€eL0 ¥i0 94L°0 99.°0 Z8L0 Z8L0 LLL O 1LL'0 £9L°0 89L0 95L°0 AL I8

€TL0 SEL0 L¥L0 6510 69L0 SLLO TLL0 19.°0 09L0 9S.L0 ¥SL0 Lo g3

Jaquinu

(14 62 8T LT 9T 114 ¥Z €T 144 1z B i | aonyeIg

SATOAD FFYHL LSVTHHL NI d1L
4av1d GHL LV ININVTIL WVIHELS 'S FHL 40 (W) SSENMOIHL 40 SANTVA FHI—TITEVL

147



The converging process of V,r is similar to that of 7 of S;. The variation of Vor, relative to its
value at the exit, along the seven streamlines in the 9th cycle of calculation is compared to that in the 1st

cycle of calculation in figure 7.5.

On the other hand, the change in the angular thickness of stream filament S, is relatively simple.
The stream-wise value on the seven streamlines used as input value to the 9th cycle is shown in
figure 7.6(b) and is compared to those assumed in the 1st cycle (fig. 7.6(a)). The abrupt change in 7

and V.r streamline) is clearly seen in figure 7.5(b) (and 7.3(b), 7.4 b)).
6

Figure 7.7(a) shows the Mach number variation along the mean streamlines obtained on the seven
S, surfaces in the 9th cycle, whereas figure 7.7(b) shows those along the streamlines on the S, surface
obtained in the 9th cycle. They are very close; the maximum difference between the two being less than
4 pércent. This is the same value previously obtained in the iteration for a subsonic rotor. This means
that in the present solution of moderately high transonic flow, the convergence and consistency level

obtained is as good as those in the subsonic case.

Three-Dimensional Flow Field

In the approximate three-dimensional solution presented herein, the three-dimensional flow field is
obtained on the seven S, filaments of revolution extending over the whole blade passage (the S;
calculation is used mainly for obtaining the geometry of the S, filaments). The constant Mach number
contours on these S, surfaces can be readily obtained from the calculation. However, in order to make a
comparison to test data, the contours on S, surfaces at 18, 45, 68, and 89 percent span are obtained
through interpolation. They are shown in figures 7.8(a) to (d). They clearly show the strong effect of

the passage shock. The solution of §, surface flow can also be used to obtain the radial variation of
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flow variables at a number of stations along the flow direction. Two of them, the relative Mach number

and flow angle S are shown in figure 7.9.

Although only the flow variation on the central S, surface is directly available in the approximate
three-dimensional solution, those on the other S, surfaces can be constructed by the data on the
corresponding stream!ines on different S, surfaces. Constant Mach number contours on the suction and
pressure surfaces are obtained in this way and are shown together with that on the central S, surface in
figure 7.10. A second passage shock is seen on the suction surface and the central S, surface, extending

only a short distant inward from the casing.

From data on these S, surfaces, stream-wise variations of flow variables on certain streamlines can
be readily obtained. For instance, the variation of flow angle along three streamlines on the 82’ln

surface at 18-, 68-, and 89-percent blade height (at inlet) are shown in figure 7.11.

The variation of flow variables can also be shown on spanwise surfaces formed by x? and x3
coordinates. The variations of M, 8, and p on these surfaces are particularly useful for observing the
influence of the passage shock and the magnitude of vorticity or secondary flow. Mach number contours
on three such surfaces are shown in figure 7.12. On the 10-percent chord surface, the intersection of
shock surface and this surface is seen to extend from the casing all the way inward to a point very near

the hub. At the 90-percent chord surface, the flow is almost entirely subsonic.

In order to more clearly see the effect of the three-dimensional passage shock on the three-
dimensional flow field, the three-dimensional passage shock is constructed in scale and is shown in
figure 7.13. At the tip Mach number of 1.37 and hub tip ratio of 0.5 the passage shock extends from

casing all the way inward almost to the hub.
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Comparison Between Computed Flow Field with DFVLR Measured Data

The quasi-three-dimensional transonic solution obtained by the present method is compared with

available DFVLR measured data in figures 7.8, 7.9 and 7.11.

The character of the flow field obtained by the present method is seen to be in good agreement with
that constructed from DFVLR measured data. In the region near 18-percent span, a supersonic zone
appears near the leading edge of the suction surface. In the middle of the span, a bow wave appears a
short distance in front of the leading edge and the wave extends to the flow passage to form a passage
shocl'(. At about two-thirds of the span, the shock appears to be nearly attached to the leading edge.
Located in the blade tip region, is a second shock downstream of the bow wave/passage shock and the
shock is nearly normal to the suction surface. The position of the passage shock obtained in the
calculation is slightly in front of the measured position. It seems that this difference is inherent in the
solution of transonic flow by the use of the stream function /artificial density method (refs. 41, 42, and
79). Also the computed shock is more nearly normal to the suction surface, whereas the measured shock

is more inclined to the suction surface.

The result calculated by a different method (ref. 34) is included in figure 7.8 for comparison. The
character of flow is similar, but there is some difference in the magnitude between the two calculated

results.

The relatively good agreement between the calculated and measured values of Mach number and
flow angle in the radial direction tﬁg. 7.9) and flow angle along the stream-wise direction (fig. 7.11)
indicate that flow field in the central portion of the three-dimensional passage determined in the present
method is sufficiently accurate for engineering computation. It seems that a more accurate determination
of the shock position, such as the separate calculation/shock fitting method (section 6.1), appropriate
correction for blockage effect at higher radius (section 6.3,) and without assuming axially symmetrical S,

stream surface may improve the solutions.
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7.2 Full-Three-Dimensional Transonic Flow in Cas Rotor
Solution Obtained by Using a Number of S; and S, Stream Filaments

The method described in Chapter 5 for obtaining three-dimensional flow using a number of S, and
S, stream filaments was employed in reference 96 for calculating full-three-dimensional transonic flow in
the CAS rotor. A full-three-dimensional calculation was made after a quasi-three-dimensional solution
was been obtained. Thus, full-three-dimensional calculation can be used as a full-three-dimensional

analysis solution after the rotor is designed by the quasi-three-dimensional procedure.

The design parameters of the CAS compressor and details of testing were given in section 5.9. The
meridional projection of the rbtor blades, design streamlines, L2F measuring stations, and the overall
performance of the rotor were given in figures 5.42 and 5.43. The radial distribution of stagnation
pressure and absolute flow angle measured by optical and non-optical devices are shown in figure 5.44.
Three-dimensional flow calculation has been carried out for 80 and 90 percent of design speed and

compared to the L2F data available at these two speeds.
Quasi-Three-Dimensional Solution for Transonic Flow in CAS Rotor

Quasi-three-dimensional solutions of transonic rotor were obtained for 80- and 90-percent design
speed. The stagnation pressure and the absolute flow angle, measured by Setra capacitance transistor
and L2F velocimeter, respectively, are taken as the outlet boundary conditions. The other main inp'ut
data are: flow path in mt;.ridional plane, blade geometry (coordinates given on S, surface or on
manufacturing templates), inlet pressure and temperature, rotor speed, mass flow and mass flow

coefficient.
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The first step is to solve the flow along an S2,m surface about midway between two adjacent
blades. The computer code of reference 64, with a given absolute outlet flow angle and rotor efficiency, is
used for this purpose. The isentropic efficiency of the rotor is determined by the torque measurement.
The radial distribution of rotor efficiency is calculated with the stagnation pressure and temperature
measurements. With the absolute velocity and flow angle measured by L2F velocimeter, the angular
momentum Vr is c_alculated. During calculation, the outlet flow angle a and radial distribution of
efficiency 'q‘ are updated successively, until Vgr converges, and the calculated pressure p0 is in
agreement with the experimental values. This process takes only three to five cycles. The set of radial
distribution values of po, a,and Vpr at the outlet station and the rotor efficiency 7, are used for
three-dimensional calculation of internal flow field and are compared with the L2F measured internal
flow field. Figure 7.14 shows the calculated values as compared to the measured values at the outlet

station.

From this solution of S2,m flow, the geometry of the 11 §, surfaces of revolution and the variation of
the S, stream filaments are obtained. The coordinates of the cofresponding blade surface are calculated
by interpolation. The computer code of reference 41 is used to calculate the S, transonic flow. After
the solution of the flow on the 11 S, surfaces are obtained, a new S2,m surface along with the
corresponding variations of thickness of the 8, filament Number 10 in figure 7.15. The angular
momentum Vgr along streamline. Number 2 and Number 10 on the Sz,m surface during iteration are
shown in figure 7.16. In figure 7.17 the relative Mach numbers along the intersecting streamlines
obtained on S, surface and on Sz,m surface are shown. The closeness between the values shows the

degree of consistency as well as convergence reached in the solution.

Table I below gives the geometry and major flow parameters on six S, stream filaments obtained

in the solution
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TABLE II.—MAJOR PARAMETERS ON SIX 8, STREAM FILAMENTS OF REVOLUTION

S M B4 Bas Coordinates r,m r/r,t T o,
degree degree 1,0 degree
c=0 t=.5 <=1 T=0 c=.5 =1 T
11 1.180 —66.2 -56.2 3426 .3390 3354 1.000 1.014 .943 943 -~7.98
9 1.089 —64.2 -51.2 .3133 3102 3078 1.092 1.021 879 .896 ~5.49
7 993 -61.3 —~45.7 .2807 2801 2788 1.234 1.121 1.071 868 -1.73
5 .883 -574 —38.5 2434 .2460 2465 1.404 1.305 1.206 .869 2.61
3 .758 -51.2 —27.6 .1088 .2055 .2096 1.730 1.589 1.433 929 8.62
1 .609 —38.7 3.8 1370 .1499 .1628 2.638 2.461 1.929 .731 18.41
*r, = 1.141 cm.

In the table values of Ty Tos0 Tpp and 7/7, show clearly the quasi-three-dimensional assumption of

the 'S, stream surface. Although the S, surface is axially-symmetric, the flow on S, varies in the

circumferential direction.

The meridional projection of streamlines on Sz,m is shown in figure 7.18(a).

The stream-wise variation of the S, filament thickness and the angular momentum V,r at the mean

streamline on six S, stream surfaces is shown in figures 7.19 and 7.20, respectively. On the S, surface

near the hub, the flow is subsonic and these curves resemble those previously obtained in the subsonic

compres;or (for example, fig. 5.40 and 5.39). But for the S, surface located in the region where a

passage shock exists, the curves are greatly affected by the shock.

The circumferential variations of relative Mach number at six axial stations on five S, surfaces are

shown in figure 7.21.
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Full-Three-Dimensional Flow in CAS Rotor

As mentioned in Section 5.7 the full-three-dimensional solution can be made by going into the multi-
S, calculation immediately after the completion of the multi-S; calculation in the first cycle interaction
(A-B-C in fig. 7.22). But, in the present calculation, multi-S, calculations are carried out after the
completion of the qua.gi-three—dimensional solution (A-B-A-B in fig. 7.22). It is found that the iterative
calculation between six (in the first four cycles) to 11 (in the last two cycles) S, surfaces and seven S,
surfaces reaches an acceptable level of convergence and consistency after six cycles of iteration. There are
52 (21 in the blade region) and 11 stations, respectively, along x! and x? coordinates on each S,
surface, and 52 and 11 stations, respectively, along x! and x? coordinates on each S, surface. The
solution of the flow on the seven S, surfaces employed in the iterative calculation is based on the
“inverse type” solution, i.e., Vof obtained in the S, solution is taken as the input value to the S,
solution. The S, surface adjacent to the blade surface is placed a short distance from it, and the mass
flow between them is 5 percent of the total flow. The S, and S, computer codes are connected
through two interpolation codes so that Vgr distribution and S, filament thickness obtained in the
solution of flow on S, surfaces are interpolated for input values to different S, surfaces. Similarly the
geometry of the S, surfaces and the filament thickness 7 obtained in the solution of flow on S,

surfaces, are interpolated for input values to the S, surfaces.

Similar to the quasi-three-dimensional solution, entropy increases across the rotor at different radii
are calculated according to the rotor efficiency at these radii. The variation of entropy increased along
the x! direction is obtained by considering that (1) there is no entropy increase in the flow up to shock
line, (2) entropy increases ai)ruptly across the shock, and (3) from there on it increases linearly to the
outlet value. In order to be consistent, the value of entropy used in the S; calculation is the same as

that in the S, calculation at the same grid point. Because of the lack of data on how entropy varies
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from blade to blade, the circumferential variation of entropy is considered neither on the S, surface nor

on different S2 surfaces.
Converging Process

Since the main difference between a quasi-three-dimensional and a full-three-dimensional solution is
whether the radius of the S, surface is or is not circumferentially constantr,rthe convergence in the
geometry of S; surface is an indication of the convergence of the full-three-dimensional solution.

Table IV lists the changes in the radii of three S, surfaces during iteration. The corresponding changes

in S1 filament are listed in Table V.

TABLE IV.—CHANGES IN RADIUS (m) OF GENERAL S, SURFACES DURING ITERATION

s, S, I v viI
Station
cycle 21 31 41 21 31 41 21 31 41
9 1 3111 .3102 .3083 31256 .3102 3077 3127 .3098 .3070
13 3118 3101 .3081 3131 .3108 .3082 .3137 .3108 .3080
6 .3118 .3101 .2781 .3131 .3108 .3082 3137 .3108 .3080
7 1 2784 .2796 2793 2807 .2806 2792 2814 .2802 2792
5 .2791 2794 .2790 .2811 .2804 2794 .2823 .2806 .2793
] .2791 2794 .2790 2811 .2805 2794 2823 .2806 L2794
5 1 .2425 .2453 2473 .2451 .2476 .2481 2471 .2483 .2490
b .2430 .2453 .2469 2445 .2468 .2476 .2466 .2475 .2480
8 .2429 .2453 .2469 2445 .2487 .2476 .2465 2474 .2479
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TABLE V.—CHANGES IN FILAMENT THICKNESS (cm) OF GENERAL S, SURFACES

S, 8, 1 v . Vi
Station
cycle 21 31 41 21 31 41 21 31 41
9 1 1.143 1.054 .986 1.096 1.035 087 1.087 1.050 987
5 1.126 1.054 .986 1.084 1.039 977 1.061 1.037 956
6 1.126 1.052 985 1.084 1.037 977 1.062 1.036 956
7 1 1.189 1.131 1.0683 1.174 1.087 1.033 1.127 1.059 .989
3 1.201 1.136 1.076 1.199 1.120 1.062 1.166 1.103 1.034
6 1.202 1.138 1.075 1.200 1.121 1.062 1.187 1.104 1.035
5 1 1.388 1.328 1.229 1.388 1.294 1.201 1.373 1.277 1.160
5 1.366 1.298 1.213 1.401 1.295 1.204 1.374 1.279 1.158
6 © 1,367 1.299 1.213 1.402 1.296 1.204 1.376 1.279 1.159

f, = l.41l cm.

Convergence in the radius of the general S, stream surfaces and in the thickness of the general §,
stream filament is clearly indicated in Tables IV and V.

The Mach numbers along intersecting lines between S, = surfaces and S; surfaces are shown in

figure 7.17(b).

In figure 7.23 the Mach numbers along intersecting streamlines between S, surfaces and S, surfaces in
this solution are shown. A comparison between figures 7.17(a) and 7.17(b) and figure 7.23 itself indicates
that much better convergence and consistency are achieved in the full-three-dimensional solution than

that achieved in the quasi-three-dimensional solution.
Geometry of S, and S, Stream Filaments

Data in tables VI and VII show that the radius of the S, surface increases in the circumferential
direction at the blade leading edge, and the difference decreases toward the blade trailing edge. On the

other hand, the filament thickness at the leading edge is larger near the pressure surface at large radius

and larger near the suction surface at small radius. The difference decreases toward the trailing edge.
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This configuration of the S, stream filaments is a combined result of the flow vorticity and the passage
shock. In subsonic flow the relative circumferential difference in the radius is found to be about
0.2 percent, but in transonic flow the maximum value is about 1.3 percent, an order of magnitude higher.

The geometry of the S, stream filaments is given in table VIIL

TABLE VIL.—COORDINATE r (m) OF S, STREAM SURFACES

5., 8, Number =7 Number =4

station I IR I v v 1 n I v v
17 2792 | .2802 | .2806 | .2811 | .2815 | .2200 | .2205 | .2214 | .2222 | .2220
21 2792 | 2800 | 2811 | .2820 | .2825 | .2220 | .2230 | .2230 | .2248 | .2250
26 2792 | .2800 | .2806 | .2812 | .2819 | .2243 | .2248 | .2256 | .2263 | .2268
33 2795 | .2802 | .2803 | .2804 | .2soz | 2271 | 2278 | .2284 | .2287 | .2290
41 2780 | .2me3 | 2793 | 2703 | .2704 | .2204 | .2200 | .2301 | .2303 | .2307
45 2784 | o785 | 2185 | 2785 | .2787 | .2304 | .2305 | .2306 | .2305 | .2308

TABLE VIL—THICKNESS OF S, STREAM FILAMENTS (r/7,)

S 8, Number 11 (Filament of Revolution) Number 7 (General Filament)

station I I 1 v v I i I v v
16 1.026 1.017 1.008 1.001 .996 1.251 1.262 1.253 1.246 1.239
21 1.054 1.043 1.021 1.007 .996 1.202 1.209 1.200 1.187 1.167
31 1.028 .986 .870 1.957 957 1.138 1.130 1.121 1.114 1.104
41 .954 946 954 957 .968 1.075 1.067 1.062 1.058 1.052
46 929 .928 929 929 928 1.042 1.039 1.038 1.037 1.035

Number 4 (General Filament) ) Number 1 (Filament of Revolution)

I 1I |04 v v I I m v v
16 1.643 1.653 1.653 1.652 1.647 3.497 3.488 3.542 3.5692 3.695
21 1.502 1.5633 1.546 1.557 1.543 2.876 2.872 2.955 3.053 3.172
31 1.418 1.431 1.430 1.429 1.121 2.613 2.603 2.662 2.709 2.738
41 1.317 1.318 1.316 1.306 1.297 1.962 2.055 2.099 2.133 2.191
46 1.255 1.256 1.255 1.254 1.251 1.692 1.703 1.711 1.720 1.741

T = 1.41 cm.

Figures 7.24 and 7.25 show, respectively, the 10 S, stream filaments formed by the 11 S, stream
surfaces and the intersecting lines of the 11 S, stream surfaces with three span-wise surfaces. It is found
during calculation that the twist of the S, surface in the radial direction is relatively large at the blade

leading edge and relatively small at blade trailing edge. For instance, the radii of S; surface Number 5
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at the blade leading edge are, respectively. 0.2429 m at the pressure surface and 0.2465 m at the suction
surface, a difference of 0 to 0.0036 m or 1.48 percent, but at the trailing edge they are, respectively,

0.2469 and 0.2479, a difference of only 0.001 m or 0.4 percent.

The geometry of S, stream surfaces is one of the most important three-dimensional flow variables.
The blade section is now operating inside this filament. The flow characteristics are greatly influenced by

the variation of filament thickness in stream-wise as well as in circumferential direction.
Three-Dimensional Flow Field

The three-dimensional geometry of the S; stream filaments, given in tables VI and VII, and the
blade sections lying in the ﬁlarﬁent determine the flow along these filaments and consequently the flow
over the whole channels (see fig. 5.27). The meridional projection of the streamlines obtained on the
S3m surface S, filament thickness and Vgr along the mean streamline on six S; stream surfaces are
given in figures 7.18(b), 7.19(b) and 7.20(b), respectively. The difference between the solution obtained
in the present full-three-dimensional solution and the previous quasi-three-dimensional solution is quite
apparent. The major geometry and inlet and outlet flow conditions of the six S; stream filaments are
listed in table VI in which a and b denote the two corners at the upstream station, e and f at mid-

point of chord length and ¢ and d at the downstream station. r./r,, ry/r, and 1./7,, 14/7, are the

contraction in r and filament thickness r, respectively, on the two sides.

The flow determined on the six S, filaments is shown in figure 7.26 in terms of constant Mach number
contours. They are drawn for flow fields including four stations upstream and three stations downstream
of the blade. The inlet Mach number varies from 0.6 at the hub to 1.25 at the tip. The supersonic

region begins to appear on surface (3). On surface (7) a bow wave appears and extends to the suction
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surface as a passage shock. On the tip surface (11) the passage shock hits the suction surface at about

50-percent chord point.
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The geometry of the S, stream filaments is given in table VIII. Similar to the S, stream
filaments, the three-dimensional geometry of the S, stream filaments and the meridional wall shape
determine the flow along these filaments and consequently the flow over the whole channel (see fig. 5.29).
figure 7.27 shows the constant Mach number contours on the S, filaments. Notice that, whereas in the
quasi-three-dimensional solution only flow on one S, surface (the S, surface), which took part in the
iteration, is directly obtained in the solution, in full-three-dimensional solution the flow on all S,
surfaces, which took part in the iteration, are directly obtained in the solution. The circumferentially
uniform flow at the inlet station becomes nonuniform near the blade leading edge, where tip Mach
number varies from 1.18 on S, (I) to 1.21 on S, (VII). It becomes uniform again at three stations
downstream of the blade. From the pressure surface of one blade toward the suction surface of the
adjacent blade, the intersection line of the shock and the surface becomes longer and moves downstream.
The flow condition on S, (I) a.x;d (VII) should be particularly useful in the investigation of boundary

layer flow along the blade surfaces.

Using data obtained from these two families of stream surfaces a three-dimensional view of the shock
can easily be constructed (fig. 7.28). The passage shock is seen to extend from the casing part way
(about two-thirds) down to the hub. The shock is nearly normal to the suction surface and more inclined

at lower radius.

Using data obtained on the S, and S, surfaces, constant Mach number contours can also be

2 and x® coordinates, nearly

constructed on a number of a third family of surfaces, formed by the x
normal to S, and S, surfaces at stations 1 (L.E.), 5,9, 11, and 21 (T.E) (fig. 7.28). In the stream-

wise direction the shock intersection line becomes shorter, and the circumferential gradient in Mach

number becomes smaller. Between station 11 and 21 appears a reverse circumferential Mach number
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gradient in the lower part of the passage. Consequently there is also a reverse circumferential gradient in

pressure, which will affect the boundary layer along the hub wall.

Constant ¢ contours are obtained on five such surfaces and are shown in figure 7.30. At station
J=0 (one station upstream of the blade) there is a significant difference circumferentially in the upper
half of the flow channel. At the pressure surface side o is +2°, whereas on the suction surface side, o
is —2° to —6°. This difference in ¢ means that the air is moving outward on the left and moving
inward on the right. At station 2 the air on the upper left is now moving inward-with —8° to —10°,
Thus there is a twist of S, surface between station 0 and station 2. It is nearly uniform
circumferentially at station 6. At station 10 a sharp change of 2° appears in the flow direction over most

part of the channel. At station 21 the value ¢ is again nearly uniform in the circumferential direction.

The stream-wise variations of filament thickness and angular momentum Vgr of S, stream
filaments (I), (IV), and (VII) are shown, respectively, in figures 7.31 and 7.32. As for the filament
thickness 7, the variation in the subsonic hub region is similar to that of (P-t)/P, except that there is a
high peak value at the leading edge on the S,(I). In the supersonic upper region the variation of S,(I)
and S,(VII) are quite different from (P-t)/P. On S,(IV) there is still some resemblance, but it has two

peaks around the leading edge, indicating the effects of bow wave and passage shock.
The variation of Vgr is somewhat similar. In the hub region it is only slightly modified from the
usual shape in subsonic flow. But in the upper part there is quite a peak at leading edge near the

pressure surface and an overshoot at the trailing edge near the suction surface. In the tip region there is

either a two-step rise or fluctuation in the Vgr variation.
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Difference Between Three-Dimensional and Quasi-Three-Dimensional Solution

The difference between three-dimensional and quasi-three-dimensional solution is entirely due to the
difference in the geometry of the S, stream filament. Tables III and VIII show the major difference

between the Sl streamn filaments involved in the two calculations.

First, there is some difference in the geometry of S, = in the radial coordinate and in the
contraction of the filaments thickness. Figure 7.19 shows the difference in the streamwise variation of the

Sz,m filament thickness.

A rather complicated variation in the full-three-dimensional flow is much simplified in the quasi-
three-dimensional flow. The stfeamwise variations of the important flow variable Vyr on the S,!,ln
surface are compared in figure 7.20. A higher overshoot exists in the quasi-three-dimensional solution.
The streamwise variations of Mach number along the intersecting streamline of the S; and S2,m
surfaces, obtained in the solution on the two surfaces, are compared in figure 7.17. The full-three-
dimensional solution has reached a higher level of consistency and convergence than the quasi-three-
dimensional solution. The former, in general, gives a slightly higher peak Mach number than the latter.
This difference is also noticeable in the comparison of the constant Mach number contour maps on the
S2’m surface shown in figure 7.34.

Circumferential variations of Mach number at six stations on five Sl surfaces obtained in full-three-
dimensional and quasi-three-dimensional solution are compared in figure 7.21. In addition to the factors
influencing the solution mentioned above, the circumferential variation in the S; geometry in the full-

three-dimensional solution also influences the result. It can be seen from tables V, VI, and VIII that for

S, surfaces above S,(7), the filament thickness and its contraction on the side near the pressure surface
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is significantly different from those on the side near the suction surface. The combined effect on the
velocity distribution is that, on 8, surfaces above $,(7), the Mach number of the full-three-dimensional
solution is higher in the region from mid-channel to suction surface and lower in the region from mid-

channel to pressure surface, than that of the quasi-three-dimensional solution.

Comparison with L2F Measurement

Efforts were made at IETP to obtain internal flow on S, surface (4), and (7) to (10) by the use of
a Laser-2-Focus (L2F) velocimeter developed by DFVLR. Measured values are shown in figure 7.21. In
general the measured values are a little higher than the calculated values. Constant Mach number
contours, constructed from the L2F measured data, are ghown in figure 7.33. The trend is similar, but

again the measured Mach number is a little higher than the calculated value.

7.3 Some Remarks

The general theory of three-dimensional flow in subsonic and supersonic turbomachinery based on
the iterative solution between S, and S, stream filaments has been successfully extended to a transonic
flow regime. In this extension, some of the recently developed simple and quick methods for solving
transonic flow along S, and S, stream filaments are utilized. For the CAS transonic rotor, three-
dimensional solution is obtained after six cycles of iteration by using the quasi-three-dimensional solution
as the starting value. It has a higher level of convergence and consistency than the quasi-three-
dimensional solution. The difference between three-dimensional and quasi-three-dimensional solution is:
The former gives a higher peak Mach number than the latter. This difference is mainly due to the
neglect of the circumferential variation of the S, filament thickness in the quasi-three-dimensional

solution. A comparison between the theoretical solution and the L2F measurement shows that the
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character of the transonic flow including the three-dimensional shock structure is in fair agreement, and
the calculated velocity is a little lower than that measured by L2F over most of the flow region, except

at the 20-percent chord station in the upper half region near the suction surface, where the measured

velocity is a little lower.

A practical three-dimensional computer aided design and analysis (three-dimensional-CADA) system
has been constructed by the use of the general S, code and the general S, code. The recommended

procedure of three-dimensional-CADA calculation follows.

(1) Prescribed the through-flow design requirements on the S, ., surface and obtain the S,
solution
(2) Design the blade section on a number of general S, stream filaments
(3) Stack the blade sections
(4) Obtain the three-dimensional analysis for the blade just designed
(5) Modify step 1 or step 2 and repeat steps 3 and 4 until the results obtained meet the design
requirements
It is believed that the configuration of the three-dimensional geometry of the S; stream filaments,
obtained during the iterative calculation between the S, and S, flow, to a large extent, determines the
performance of the blade section lying in the stream filament. With this information available better
design of the blade section and, consequently, of the whole blade can be realized. Another advantage of
the presented method is that the computer storage required is very small and the amount of CPU time is

also small so it is feasible to carry out all of the computations on a microcomputer.
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Figure 3.1—Relative stream surface S;.

Figure 3.2—Relative stream surface S,.
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Figure 3.3.—Intersecting S, and S, surfaces in blade passage.
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Figure 5.11.—Family of S, surface formed progres-
sively from Sj.
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Figure 6.3—Streamline distribution and Mach contours.
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Figure 6.17.—General S; stream surface.
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Figure 7.29.—Mach number contours on five span-wise surfaces.
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Figure 7.30.—Constant « contours on five span-wise surfaces.
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(a) Full 3-D. (b) Quasi-3-D. (c) L2F.

Figure 7.33.—Comparison of Mach number contours on Som-
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